我是靠谱客的博主 斯文芹菜,最近开发中收集的这篇文章主要介绍bc13&&hdoj5062&&hdoj5063 Beautiful Palindrome Number Operation the Sequence,觉得挺不错的,现在分享给大家,希望可以做个参考。
概述
Beautiful Palindrome Number
Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 951 Accepted Submission(s): 626
Problem Description
A positive integer x can represent as
(a1a2…akak…a2a1)10
or
(a1a2…ak−1akak−1…a2a1)10
of a 10-based notational system, we always call x is a Palindrome Number. If it satisfies
0<a1<a2<…<ak≤9
, we call x is a Beautiful Palindrome Number.
Now, we want to know how many Beautiful Palindrome Numbers are between 1 and 10N .
Now, we want to know how many Beautiful Palindrome Numbers are between 1 and 10N .
Input
The first line in the input file is an integer
T(1≤T≤7)
, indicating the number of test cases.
Then T lines follow, each line represent an integer N(0≤N≤6) .
Then T lines follow, each line represent an integer N(0≤N≤6) .
Output
For each test case, output the number of Beautiful Palindrome Number.
Sample Input
2 1 6
Sample Output
9 258
Source
BestCoder Round #13
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<list>
#include<vector>
using namespace std;
const int maxn=1000010;
int num[maxn];
char str[10];
void dabiao(){
int i,j;
for(i=1;i<maxn;++i){
sprintf(str,"%d",i);
int len=strlen(str);
for(j=0;j<(len+1)/2;++j){
if(str[j]==str[len-j-1]){
if(j==((len+1)/2-1)||str[j]<str[j+1]);
else break;
}
else break;
}
if(j<(len+1)/2)num[i]=num[i-1];
else num[i]=num[i-1]+1;
}
}
int cnt[10]={1,10,100,1000,10000,100000,1000000,10000000};
int main()
{
dabiao();
int n,t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
printf("%dn",num[cnt[n]]);
}
return 0;
}
Operation the Sequence
Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 779 Accepted Submission(s): 265
Problem Description
You have an array consisting of n integers:
a1=1,a2=2,a3=3,…,an=n
. Then give you m operators, you should process all the operators in order. Each operator is one of four types:
Type1: O 1 call fun1();
Type2: O 2 call fun2();
Type3: O 3 call fun3();
Type4: Q i query current value of a[i], this operator will have at most 50.
Global Variables: a[1…n],b[1…n];
fun1() {
index=1;
for(i=1; i<=n; i +=2)
b[index++]=a[i];
for(i=2; i<=n; i +=2)
b[index++]=a[i];
for(i=1; i<=n; ++i)
a[i]=b[i];
}
fun2() {
L = 1;R = n;
while(L<R) {
Swap(a[L], a[R]);
++L;--R;
}
}
fun3() {
for(i=1; i<=n; ++i)
a[i]=a[i]*a[i];
}
Type1: O 1 call fun1();
Type2: O 2 call fun2();
Type3: O 3 call fun3();
Type4: Q i query current value of a[i], this operator will have at most 50.
Global Variables: a[1…n],b[1…n];
fun1() {
index=1;
for(i=1; i<=n; i +=2)
b[index++]=a[i];
for(i=2; i<=n; i +=2)
b[index++]=a[i];
for(i=1; i<=n; ++i)
a[i]=b[i];
}
fun2() {
L = 1;R = n;
while(L<R) {
Swap(a[L], a[R]);
++L;--R;
}
}
fun3() {
for(i=1; i<=n; ++i)
a[i]=a[i]*a[i];
}
Input
The first line in the input file is an integer
T(1≤T≤20)
, indicating the number of test cases.
The first line of each test case contains two integer n(0<n≤100000) , m(0<m≤100000) .
Then m lines follow, each line represent an operator above.
The first line of each test case contains two integer n(0<n≤100000) , m(0<m≤100000) .
Then m lines follow, each line represent an operator above.
Output
For each test case, output the query values, the values may be so large, you just output the values mod 1000000007(1e9+7).
Sample Input
1 3 5 O 1 O 2 Q 1 O 3 Q 1
Sample Output
2 4
Source
BestCoder Round #13
注意到查询次数不超过50次,那么可以从查询位置逆回去操作,就可以发现它在最初序列的位置,再逆回去即可求得当前查询的值,对于一组数据复杂度约为O(50*n)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<list>
#include<vector>
#define MOD 1000000007LL
using namespace std;
const int maxn=100010;
long long oper[maxn],n;
long long cnt,pos;
long long query(){
long long b=0,i;
for(i=cnt-1;i>=0;--i){
if(oper[i]==1){
if(pos<=(n+1)/2){
pos=2*pos-1;
}
else {
pos=2*(pos-(n+1)/2);
}
}
else if(oper[i]==2){
pos=n-pos+1;
}
else if(oper[i]==3){
b++;
}
}
while(b--){
pos=pos*pos%MOD;
}
return pos;
}
int main()
{
int t,m;
scanf("%d",&t);
while(t--){
scanf("%lld%d",&n,&m);
char str[5];cnt=0;
while(m--){
scanf("%s%lld",str,&pos);
if(str[0]=='O'){
oper[cnt++]=pos;
}
else {
printf("%lldn",query());
}
}
}
return 0;
}
最后
以上就是斯文芹菜为你收集整理的bc13&&hdoj5062&&hdoj5063 Beautiful Palindrome Number Operation the Sequence的全部内容,希望文章能够帮你解决bc13&&hdoj5062&&hdoj5063 Beautiful Palindrome Number Operation the Sequence所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复