我是靠谱客的博主 义气红牛,最近开发中收集的这篇文章主要介绍dropout层加在哪里_【Keras】减少过拟合的秘诀——Dropout正则化,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

摘要: Dropout正则化是最简单的神经网络正则化方法。阅读完本文,你就学会了在Keras框架中,如何将深度学习神经网络Dropout正则化添加到深度学习神经网络模型里。

Dropout正则化是最简单的神经网络正则化方法。其原理非常简单粗暴:任意丢弃神经网络层中的输入,该层可以是数据样本中的输入变量或来自先前层的激活。它能够模拟具有大量不同网络结构的神经网络,并且反过来使网络中的节点更具有鲁棒性。

阅读完本文,你就学会了在Keras框架中,如何将深度学习神经网络Dropout正则化添加到深度学习神经网络模型里,具体内容如下:如何使用Keras API创建Dropout层;如何使用Keras API将Dropout正则化添加到MLP、CNN和RNN层;在现有模型中,如何使用Dropout正则化减少过拟合。

Keras中的Dopout正则化

在Keras深度学习框架中,我们可以使用Dopout正则化,其最简单的Dopout形式是Dropout核心层。

在创建Dopout正则化时,可以将 dropout rate的设为某一固定值,当dropout rate=0.8时,实际上,保留概率为0.2。下面的例子中,dropout rate=0.5。

layer = Dropout(0.5)

Dropout层

将Dropout层添加到模型的现有层和之前的输出层之间,神经网络将这些输出反馈到后续层中。用dense()方法指定两个全连接网络层:

...

model.append(Dense(32))

mo

最后

以上就是义气红牛为你收集整理的dropout层加在哪里_【Keras】减少过拟合的秘诀——Dropout正则化的全部内容,希望文章能够帮你解决dropout层加在哪里_【Keras】减少过拟合的秘诀——Dropout正则化所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(46)

评论列表共有 0 条评论

立即
投稿
返回
顶部