我是靠谱客的博主 大意烧鹅,最近开发中收集的这篇文章主要介绍数据归一化和两种常用的归一化方法,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。以下是两种常用的归一化方法:

一、min-max标准化(Min-Max Normalization)

也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间。转换函数如下:

clip_image002

其中max为样本数据的最大值,min为样本数据的最小值。这种方法有个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。

二、Z-score标准化方法

这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1,转化函数为:

clip_image004

其中clip_image006为所有样本数据的均值,clip_image008为所有样本数据的标准差。

参考文献:

http://webdataanalysis.net/data-analysis-method/data-normalization/

最后

以上就是大意烧鹅为你收集整理的数据归一化和两种常用的归一化方法的全部内容,希望文章能够帮你解决数据归一化和两种常用的归一化方法所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(49)

评论列表共有 0 条评论

立即
投稿
返回
顶部