我是靠谱客的博主 笑点低芒果,最近开发中收集的这篇文章主要介绍数据归一化处理方法_数据预处理:归一化和标准化,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

1. 概述

数据的归一化和标准化是特征缩放(feature scaling)的方法,是数据预处理的关键步骤。不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据归一化/标准化处理,以解决数据指标之间的可比性。原始数据经过数据归一化/标准化处理后,各指标处于同一数量级,适合进行综合对比评价。

归一化/标准化实质是一种线性变换,线性变换有很多良好的性质,这些性质决定了对数据改变后不会造成“失效”,反而能提高数据的表现,这些性质是归一化/标准化的前提。比如有一个很重要的性质:线性变换不会改变原始数据的数值排序。具体作用可总结如下:

(1)某些模型求解需要

  • 在使用梯度下降的方法求解最优化问题时, 归一化/标准化后可以加快梯度下降的求解速度,即提升模型的收敛速度。
  • 一些分类器需要计算样本之间的距离(如欧氏距离),例如KNN。如果一个特征值域范围非常大,那么距离计算就主要取决于这个特征,从而与实际情况相悖(比如这时实际情况是值域范围小的特征更重要)。

(2)无量纲化

例如房子数量和收入,因为从业务层知道,这两者的重要性一样,所以把它们全部归一化。 这是从业务层面上作的处理。

(3)避免数值问题

太大的数会引发数值问题。

2. 归一化和标准化(线性变换)

2.1 归一化(Normalization)

归一化一般是将数据映射到指定的范围,用于去除不同维度数据的量纲

最后

以上就是笑点低芒果为你收集整理的数据归一化处理方法_数据预处理:归一化和标准化的全部内容,希望文章能够帮你解决数据归一化处理方法_数据预处理:归一化和标准化所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(69)

评论列表共有 0 条评论

立即
投稿
返回
顶部