我是靠谱客的博主 繁荣雪碧,最近开发中收集的这篇文章主要介绍分布式全局不重复ID生成算法Twitter的Snowflake,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

在分布式系统中经常会使用到生成全局唯一不重复ID的情况。

常见的一些方式

1、通过DB做全局自增操作

优点:简单、高效。
缺点:大并发、分布式情况下性能比较低。

分库、分表的策略去降低DB的瓶颈,单要做到全局不重要需要提前按照一定的区域进行划分。例如:1 ~ 300000、300001 ~ 600000 等等。但这个灵活度比较低。

针对一些并发比较低的情况也可以使用类似这种方式。但大并发时不建议使用,DB很容易成为瓶颈。

2、获取当前时间纳秒或毫秒数

这种方式需要考虑的是在分布式集群中如果保证唯一性。

3、类似UUID的生成方式

生成的串比较大,不建议使用。

Twitter的Snowflake(雪花算法)

/**
 * 名称:IdWorker.java
 * 描述:分布式自增长ID
 * 核心代码为其IdWorker这个类实现,其原理结构如下,我分别用一个0表示一位,用—分割开部分的作用:
 * 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000
 * 在上面的字符串中,第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间,
 * 然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识),
 * 然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。
 * 这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分),
 * 并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。
 * 64位ID (42(毫秒)+5(机器ID)+5(业务编码)+12(重复累加))
 * @author Polim
 */
public class IdWorker {
    // 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动)
    private final static long twepoch = 1288834974657L;
    // 机器标识位数
    private final static long workerIdBits = 5L;
    // 数据中心标识位数
    private final static long datacenterIdBits = 5L;
    // 机器ID最大值
    private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);
    // 数据中心ID最大值
    private final static long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    // 毫秒内自增位
    private final static long sequenceBits = 12L;
    // 机器ID偏左移12位
    private final static long workerIdShift = sequenceBits;
    // 数据中心ID左移17位
    private final static long datacenterIdShift = sequenceBits + workerIdBits;
    // 时间毫秒左移22位
    private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
    /* 上次生产id时间戳 */
    private static long lastTimestamp = -1L;
    // 0,并发控制
    private long sequence = 0L;
    private final long workerId;
    // 数据标识id部分
    private final long datacenterId;
    
    public IdWorker(){
        this.datacenterId = getDatacenterId(maxDatacenterId);
        this.workerId = getMaxWorkerId(datacenterId, maxWorkerId);
    }
    /**
     * @param workerId 工作机器ID
     * @param datacenterId 序列号
     */
    public IdWorker(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }
    /**
     * 获取下一个ID
     * @return id
     */
    public synchronized long nextId() {
        long timestamp = timeGen();
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }

        if (lastTimestamp == timestamp) {
            // 当前毫秒内,则+1
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                // 当前毫秒内计数满了,则等待下一秒
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0L;
        }
        lastTimestamp = timestamp;
        // ID偏移组合生成最终的ID,并返回ID
        long nextId = ((timestamp - twepoch) << timestampLeftShift)
                | (datacenterId << datacenterIdShift)
                | (workerId << workerIdShift) | sequence;

        return nextId;
    }

    private long tilNextMillis(final long lastTimestamp) {
        long timestamp = this.timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = this.timeGen();
        }
        return timestamp;
    }

    private long timeGen() {
        return System.currentTimeMillis();
    }

    /**
     * 获取 maxWorkerId
     * @return id
     */
    protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) {
        StringBuffer mpid = new StringBuffer();
        mpid.append(datacenterId);
        String name = ManagementFactory.getRuntimeMXBean().getName();
        if (!name.isEmpty()) {
         /*
          * GET jvmPid
          */
            mpid.append(name.split("@")[0]);
        }
      /*
       * MAC + PID 的 hashcode 获取16个低位
       */
        return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
    }

    /**
     * 数据标识id部分
     * @return id
     */
    protected static long getDatacenterId(long maxDatacenterId) {
        long id = 0L;
        try {
            InetAddress ip = InetAddress.getLocalHost();
            NetworkInterface network = NetworkInterface.getByInetAddress(ip);
            if (network == null) {
                id = 1L;
            } else {
                byte[] mac = network.getHardwareAddress();
                id = ((0x000000FF & (long) mac[mac.length - 1])
                        | (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6;
                id = id % (maxDatacenterId + 1);
            }
        } catch (Exception e) {
            System.out.println(" getDatacenterId: " + e.getMessage());
        }
        return id;
    }
}
测试类
public static void main(String[] args) {
	// 实例化传入数字参数即可
	IdWorker idWorker = new IdWorker(0, 0);
	for (int i = 0; i < 100; i++) {				
		System.out.println(idWorker.nextId());
	}
}
输出结果
1096652560527261696
1096652560527261697
.....
.....
1096652560552427520
1096652560552427521

可以看到数字位数是19位数。

Spring配置方式

<bean id="idWorker" class="utils.IdWorker"> 
	<constructor-arg index="0" value="0"></constructor-arg>
	<constructor-arg index="1" value="0"></constructor-arg>
</bean>

保证每一组的indexvalue不一样就一定不会有重复的ID出现。

================================================================================
感谢阅读,写得不好的地方请指教,能帮助到你是对我最好的回报,不卑不亢,加油。
请你记住比你优秀的一定比你努力,比你努力的人一定比你优秀。
================================================================================

最后

以上就是繁荣雪碧为你收集整理的分布式全局不重复ID生成算法Twitter的Snowflake的全部内容,希望文章能够帮你解决分布式全局不重复ID生成算法Twitter的Snowflake所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(55)

评论列表共有 0 条评论

立即
投稿
返回
顶部