我是靠谱客的博主 呆萌大米,最近开发中收集的这篇文章主要介绍算法-求二进制数中1的个数普通法 快速法查表法平行算法完美法位标志法指令法,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

问题描述

任意给定一个32位无符号整数n,求n的二进制表示中1的个数,比如n = 5(0101)时,返回2,n = 15(1111)时,返回4

这也是一道比较经典的题目了,相信不少人面试的时候可能遇到过这道题吧,下面介绍了几种方法来实现这道题,相信很多人可能见过下面的算法,但我相信很少有人见到本文中所有的算法。如果您上头上有更好的算法,或者本文没有提到的算法,请不要吝惜您的代码,分享的时候,也是学习和交流的时候。

普通法

我总是习惯叫普通法,因为我实在找不到一个合适的名字来描述它,其实就是最简单的方法,有点程序基础的人都能想得到,那就是移位+计数,很简单,不多说了,直接上代码,这种方法的运算次数与输入n最高位1的位置有关,最多循环32次。

复制代码
int BitCount(unsigned int n)
{
unsigned int c =0 ; // 计数器
while (n >0)
{
if((n &1) ==1) // 当前位是1
++c ; // 计数器加1
n >>=1 ; // 移位

}
return c ;
}
复制代码

一个更精简的版本如下

复制代码
int BitCount1(unsigned int n)
{
unsigned int c =0 ; // 计数器
for (c =0; n; n >>=1) // 循环移位
c += n &1 ; // 如果当前位是1,则计数器加1
return c ;
}
复制代码

 快速法

这种方法速度比较快,其运算次数与输入n的大小无关,只与n中1的个数有关。如果n的二进制表示中有k个1,那么这个方法只需要循环k次即可。其原理是不断清除n的二进制表示中最右边的1,同时累加计数器,直至n为0,代码如下

复制代码
int BitCount2(unsigned int n)
{
unsigned int c =0 ;
for (c =0; n; ++c)
{
n &= (n -1) ; // 清除最低位的1

}
return c ;
}
复制代码

为什么n &= (n – 1)能清除最右边的1呢?因为从二进制的角度讲,n相当于在n - 1的最低位加上1。举个例子,8(1000)= 7(0111)+ 1(0001),所以8 & 7 = (1000)&(0111)= 0(0000),清除了8最右边的1(其实就是最高位的1,因为8的二进制中只有一个1)。再比如7(0111)= 6(0110)+ 1(0001),所以7 & 6 = (0111)&(0110)= 6(0110),清除了7的二进制表示中最右边的1(也就是最低位的1)。

查表法

动态建表

由于表示在程序运行时动态创建的,所以速度上肯定会慢一些,把这个版本放在这里,有两个原因

1. 介绍填表的方法,因为这个方法的确很巧妙。

2. 类型转换,这里不能使用传统的强制转换,而是先取地址再转换成对应的指针类型。也是常用的类型转换方法。

复制代码
int BitCount3(unsigned int n)
{
// 建表
unsigned char BitsSetTable256[256] = {0} ;
// 初始化表 
for (int i =0; i <256; i++)
{
BitsSetTable256[i] = (i &1) + BitsSetTable256[i /2];
}
unsigned int c =0 ;
// 查表
unsigned char* p = (unsigned char*) &n ;
c = BitsSetTable256[p[0]] +
BitsSetTable256[p[1]] +
BitsSetTable256[p[2]] +
BitsSetTable256[p[3]];
return c ;
}
复制代码

先说一下填表的原理,根据奇偶性来分析,对于任意一个正整数n

1.如果它是偶数,那么n的二进制中1的个数与n/2中1的个数是相同的,比如4和2的二进制中都有一个1,6和3的二进制中都有两个1。为啥?因为n是由n/2左移一位而来,而移位并不会增加1的个数。

2.如果n是奇数,那么n的二进制中1的个数是n/2中1的个数+1,比如7的二进制中有三个1,7/2 = 3的二进制中有两个1。为啥?因为当n是奇数时,n相当于n/2左移一位再加1。

再说一下查表的原理

对于任意一个32位无符号整数,将其分割为4部分,每部分8bit,对于这四个部分分别求出1的个数,再累加起来即可。而8bit对应2^8 = 256种01组合方式,这也是为什么表的大小为256的原因。

注意类型转换的时候,先取到n的地址,然后转换为unsigned char*,这样一个unsigned int(4 bytes)对应四个unsigned char(1 bytes),分别取出来计算即可。举个例子吧,以87654321(十六进制)为例,先写成二进制形式-8bit一组,共四组,以不同颜色区分,这四组中1的个数分别为4,4,3,2,所以一共是13个1,如下面所示。

10000111 01100101 01000011 00100001 = 4 + 4 + 3 + 2 = 13

静态表-4bit

原理和8-bit表相同,详见8-bit表的解释

复制代码
int BitCount4(unsigned int n)
{
unsigned int table[16] =
{
0, 1, 1, 2,
1, 2, 2, 3,
1, 2, 2, 3,
2, 3, 3, 4
} ;
unsigned int count =0 ;
while (n)
{
count += table[n &0xf] ;
n >>=4 ;
}
return count ;
}
复制代码

静态表-8bit

首先构造一个包含256个元素的表table,table[i]即i中1的个数,这里的i是[0-255]之间任意一个值。然后对于任意一个32bit无符号整数n,我们将其拆分成四个8bit,然后分别求出每个8bit中1的个数,再累加求和即可,这里用移位的方法,每次右移8位,并与0xff相与,取得最低位的8bit,累加后继续移位,如此往复,直到n为0。所以对于任意一个32位整数,需要查表4次。以十进制数2882400018为例,其对应的二进制数为10101011110011011110111100010010,对应的四次查表过程如下:红色表示当前8bit,绿色表示右移后高位补零。

第一次(n & 0xff)             10101011110011011110111100010010

第二次((n >> 8) & 0xff)  00000000101010111100110111101111

第三次((n >> 16) & 0xff00000000000000001010101111001101

第四次((n >> 24) & 0xff00000000000000000000000010101011

 

复制代码
int BitCount7(unsigned int n)
{
unsigned int table[256] =
{
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
};
return table[n &0xff] +
table[(n >>8) &0xff] +
table[(n >>16) &0xff] +
table[(n >>24) &0xff] ;
}
复制代码

 

当然也可以搞一个16bit的表,或者更极端一点32bit的表,速度将会更快。

平行算法

网上都这么叫,我也这么叫吧,不过话说回来,的确有平行的意味在里面,先看代码,稍后解释

复制代码
int BitCount4(unsigned int n)
{
n = (n &0x55555555) + ((n >>1) &0x55555555) ;
n = (n &0x33333333) + ((n >>2) &0x33333333) ;
n = (n &0x0f0f0f0f) + ((n >>4) &0x0f0f0f0f) ;
n = (n &0x00ff00ff) + ((n >>8) &0x00ff00ff) ;
n = (n &0x0000ffff) + ((n >>16) &0x0000ffff) ;
return n ;
}
复制代码

速度不一定最快,但是想法绝对巧妙。 说一下其中奥妙,其实很简单,先将n写成二进制形式,然后相邻位相加,重复这个过程,直到只剩下一位。

以217(11011001)为例,有图有真相,下面的图足以说明一切了。217的二进制表示中有5个1

完美法

int BitCount5(unsigned int n)
{

    unsigned int tmp
= n - ((n >> 1 ) & 033333333333 ) - ((n >> 2 ) & 011111111111 );
    return ((tmp + (tmp >> 3 )) & 030707070707 ) % 63 ;
}

最喜欢这个,代码太简洁啦,只是有个取模运算,可能速度上慢一些。区区两行代码,就能计算出1的个数,到底有何奥妙呢?为了解释的清楚一点,我尽量多说几句。

第一行代码的作用

先说明一点,以0开头的是8进制数,以0x开头的是十六进制数,上面代码中使用了三个8进制数。

将n的二进制表示写出来,然后每3bit分成一组,求出每一组中1的个数,再表示成二进制的形式。比如n = 50,其二进制表示为110010,分组后是110和010,这两组中1的个数本别是2和3。2对应010,3对应011,所以第一行代码结束后,tmp = 010011,具体是怎么实现的呢?由于每组3bit,所以这3bit对应的十进制数都能表示为2^2 * a + 2^1 * b + c的形式,也就是4a + 2b + c的形式,这里a,b,c的值为0或1,如果为0表示对应的二进制位上是0,如果为1表示对应的二进制位上是1,所以a + b + c的值也就是4a + 2b + c的二进制数中1的个数了。举个例子,十进制数6(0110)= 4 * 1 + 2 * 1 + 0,这里a = 1, b = 1, c = 0, a + b + c = 2,所以6的二进制表示中有两个1。现在的问题是,如何得到a + b + c呢?注意位运算中,右移一位相当于除2,就利用这个性质!

4a + 2b + c 右移一位等于2a + b

4a + 2b + c 右移量位等于a

然后做减法

4a + 2b + c –(2a + b) – a = a + b + c,这就是第一行代码所作的事,明白了吧。

第二行代码的作用

在第一行的基础上,将tmp中相邻的两组中1的个数累加,由于累加到过程中有些组被重复加了一次,所以要舍弃这些多加的部分,这就是&030707070707的作用,又由于最终结果可能大于63,所以要取模。

需要注意的是,经过第一行代码后,从右侧起,每相邻的3bit只有四种可能,即000, 001, 010, 011,为啥呢?因为每3bit中1的个数最多为3。所以下面的加法中不存在进位的问题,因为3 + 3 = 6,不足8,不会产生进位。

tmp + (tmp >> 3)-这句就是是相邻组相加,注意会产生重复相加的部分,比如tmp = 659 = 001 010 010 011时,tmp >> 3 = 000 001 010 010,相加得

001 010 010 011

000 001 010 010

---------------------

001 011 100 101

011 + 101 = 3 + 5 = 8。(感谢网友Di哈指正。)注意,659只是个中间变量,这个结果不代表659这个数的二进制形式中有8个1。

注意我们想要的只是第二组和最后一组(绿色部分),而第一组和第三组(红色部分)属于重复相加的部分,要消除掉,这就是&030707070707所完成的任务(每隔三位删除三位),最后为什么还要%63呢?因为上面相当于每次计算相连的6bit中1的个数,最多是111111 = 77(八进制)= 63(十进制),所以最后要对63取模。

位标志法

感谢网友 gussing提供

复制代码
struct _byte
{
unsigned a:1;
unsigned b:1;
unsigned c:1;
unsigned d:1;
unsigned e:1;
unsigned f:1;
unsigned g:1;
unsigned h:1;
};
long get_bit_count( unsigned char b )
{
struct _byte *by = (struct _byte*)&b;
return (by->a+by->b+by->c+by->d+by->e+by->f+by->g+by->h);
}
复制代码

指令法

感谢网友 Milo Yip提供

使用微软提供的指令,首先要确保你的CPU支持SSE4指令,用Everest和CPU-Z可以查看是否支持。

unsigned int n = 127 ;
unsigned
int bitCount = _mm_popcnt_u32(n) ;

References

http://gurmeetsingh.wordpress.com/2008/08/05/fast-bit-counting-routines/

作者: zdd
出处: http://www.cnblogs.com/graphics/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.

最后

以上就是呆萌大米为你收集整理的算法-求二进制数中1的个数普通法 快速法查表法平行算法完美法位标志法指令法的全部内容,希望文章能够帮你解决算法-求二进制数中1的个数普通法 快速法查表法平行算法完美法位标志法指令法所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(49)

评论列表共有 0 条评论

立即
投稿
返回
顶部