概述
索引
- 单独视角:DFT公式的推导
- 单独视角:IDFT公式的推导
- 综合视角:DFT, IDFT公式组的系数修正
单独视角:DFT公式的推导
由博文一维连续傅里叶变换和逆变换公式的一种推导,设
f
(
t
)
fleft( t right)
f(t)是一个连续的时间信号,其一维连续Fourier变换可取为
F
(
u
)
=
∫
−
∞
∞
f
(
t
)
e
−
j
2
π
u
t
d
t
Fleft( u right)=int_{-infty }^{infty }{fleft( t right){{e}^{-j2pi ut}}dt}
F(u)=∫−∞∞f(t)e−j2πutdt
步骤一
从某一时刻(记为
0
0
0时刻)开始,每经过时间间隔
Δ
T
Delta T
ΔT就对连续函数
f
(
t
)
fleft( t right)
f(t)采样一次,共采样
N
N
N次。对连续函数
f
(
t
)
fleft( t right)
f(t)等间隔采样就得到一个离散序列
f
(
Δ
T
)
,
f
(
2
Δ
T
)
,
⋯
,
f
(
N
Δ
T
)
fleft( Delta T right),fleft( 2Delta T right),cdots ,fleft( NDelta T right)
f(ΔT),f(2ΔT),⋯,f(NΔT)
记为
f
⌢
(
0
)
,
f
⌢
(
1
)
,
⋯
,
f
⌢
(
N
−
1
)
oversetfrown{f}left( 0 right),text{ }oversetfrown{f}left( 1 right),text{ }cdots ,text{ }oversetfrown{f}left( N-1 right)
f⌢(0), f⌢(1), ⋯, f⌢(N−1)
而对于其他没采样到的点,即
∀
t
∉
{
Δ
T
,
2
Δ
T
,
⋯
N
Δ
T
}
forall tnotin left{ Delta T,text{ }2Delta T,cdots NDelta T right}
∀t∈/{ΔT, 2ΔT,⋯NΔT},视该点处采样的函数值
f
(
t
)
=
0
fleft( t right)=0
f(t)=0
步骤二
将一维连续Fourier变换公式进行拆解
F
(
u
)
=
∫
−
∞
∞
f
(
t
)
e
−
j
2
π
u
t
d
t
=
∫
−
∞
0
+
∫
0
N
Δ
T
+
∫
N
Δ
T
∞
f
(
t
)
e
−
j
2
π
u
t
d
t
=
∫
−
∞
0
+
∫
N
Δ
T
∞
f
(
t
)
e
−
j
2
π
u
t
d
t
+
∫
0
N
Δ
T
f
(
t
)
e
−
j
2
π
u
t
d
t
=
0
+
∫
0
N
Δ
T
f
(
t
)
e
−
j
2
π
u
t
d
t
=
∫
0
N
Δ
T
f
(
t
)
e
−
j
2
π
u
t
d
t
=
F
1
(
u
)
begin{aligned} & Fleft( u right)=int_{-infty }^{infty }{fleft( t right){{e}^{-j2pi ut}}dt} \ & =int_{-infty }^{0}{+int_{0}^{NDelta T}{+int_{NDelta T}^{infty }{fleft( t right){{e}^{-j2pi ut}}dt}}} \ & =int_{-infty }^{0}{+int_{NDelta T}^{infty }{fleft( t right){{e}^{-j2pi ut}}dt}}+int_{0}^{NDelta T}{fleft( t right){{e}^{-j2pi ut}}dt} \ & =0+int_{0}^{NDelta T}{fleft( t right){{e}^{-j2pi ut}}dt} \ & =int_{0}^{NDelta T}{fleft( t right){{e}^{-j2pi ut}}dt} \ & ={{F}_{1}}left( u right) \ end{aligned}
F(u)=∫−∞∞f(t)e−j2πutdt=∫−∞0+∫0NΔT+∫NΔT∞f(t)e−j2πutdt=∫−∞0+∫NΔT∞f(t)e−j2πutdt+∫0NΔTf(t)e−j2πutdt=0+∫0NΔTf(t)e−j2πutdt=∫0NΔTf(t)e−j2πutdt=F1(u)
步骤三
将
F
1
(
u
)
{{F}_{1}}left( u right)
F1(u)转换为黎曼和形式
F
2
(
u
)
{{F}_{2}}left( u right)
F2(u),具体地说,把区间
[
0
,
N
Δ
T
]
left[ 0,NDelta T right]
[0,NΔT]等间隔分成
N
N
N份,第
i
i
i个区间
k
i
=
[
(
i
−
1
)
Δ
T
,
i
Δ
T
]
{{k}_{i}}=left[ left( i-1 right)Delta T,iDelta T right]
ki=[(i−1)ΔT,iΔT],
i
=
1
,
2
,
⋯
,
N
i=1,2,cdots ,N
i=1,2,⋯,N,每个区间长度为
Δ
T
Delta T
ΔT。在每个区间
k
i
{{k}_{i}}
ki上取右端点的函数值
f
(
i
Δ
T
)
e
−
j
2
π
u
⋅
(
i
Δ
T
)
fleft( iDelta T right){{e}^{-j2pi ucenterdot left( iDelta T right)}}
f(iΔT)e−j2πu⋅(iΔT)。
F
2
(
u
)
=
∑
i
=
1
N
[
f
(
i
Δ
T
)
e
−
j
2
π
u
⋅
(
i
Δ
T
)
]
⋅
Δ
T
=
∑
n
=
0
N
−
1
[
f
(
(
n
+
1
)
Δ
T
)
e
−
j
2
π
u
⋅
(
n
+
1
)
Δ
T
]
⋅
Δ
T
=
∑
n
=
0
N
−
1
[
f
⌢
(
n
)
e
−
j
2
π
u
⋅
(
n
+
1
)
Δ
T
]
⋅
Δ
T
begin{aligned} & {{F}_{2}}left( u right)=sumlimits_{i=1}^{N}{left[ fleft( iDelta T right){{e}^{-j2pi ucenterdot left( iDelta T right)}} right]centerdot Delta T} \ & =sumlimits_{n=0}^{N-1}{left[ fleft( left( n+1 right)Delta T right){{e}^{-j2pi ucenterdot left( n+1 right)Delta T}} right]centerdot Delta T} \ & =sumlimits_{n=0}^{N-1}{left[ oversetfrown{f}left( n right){{e}^{-j2pi ucenterdot left( n+1 right)Delta T}} right]centerdot Delta T} \ end{aligned}
F2(u)=i=1∑N[f(iΔT)e−j2πu⋅(iΔT)]⋅ΔT=n=0∑N−1[f((n+1)ΔT)e−j2πu⋅(n+1)ΔT]⋅ΔT=n=0∑N−1[f⌢(n)e−j2πu⋅(n+1)ΔT]⋅ΔT
步骤四
若规定采样开始点和结束点之间的时长是1个单位时间,即
N
Δ
T
=
1
NDelta T=1
NΔT=1
则有
F
2
(
u
)
=
1
N
∑
n
=
0
N
−
1
f
⌢
(
n
)
e
−
j
2
π
u
n
+
1
N
,
u
=
0
,
1
,
⋯
,
N
−
1
{{F}_{2}}left( u right)=frac{1}{N}sumlimits_{n=0}^{N-1}{oversetfrown{f}left( n right){{e}^{-j2pi ufrac{n+1}{N}}}},text{ }u=0,1,cdots ,N-1
F2(u)=N1n=0∑N−1f⌢(n)e−j2πuNn+1, u=0,1,⋯,N−1
这就可定义为DFT的一条公式。
其他形式
在取相同的一维连续Fourier变换公式的基础上,更改步骤一如下。
步骤一
从某一时刻(记为0时刻)开始,采样,然后经过时间间隔
Δ
T
Delta T
ΔT才对
f
(
t
)
fleft( t right)
f(t)采样一次,共采样
N
N
N次。采样最后一次时再过时间
Δ
T
Delta T
ΔT才终止操作。对
f
(
t
)
fleft( t right)
f(t)等间隔采样得到一个离散序列
f
(
0
)
,
f
(
Δ
T
)
,
⋯
,
f
(
(
N
−
1
)
Δ
T
)
fleft( 0 right),text{ }fleft( Delta T right),text{ }cdots ,text{ }fleft( left( N-1 right)Delta T right)
f(0), f(ΔT), ⋯, f((N−1)ΔT)
记为
f
⌢
(
0
)
,
f
⌢
(
1
)
,
⋯
,
f
⌢
(
N
−
1
)
oversetfrown{f}left( 0 right),text{ }oversetfrown{f}left( 1 right),text{ }cdots ,text{ }oversetfrown{f}left( N-1 right)
f⌢(0), f⌢(1), ⋯, f⌢(N−1)
原步骤二无需变动。
原步骤三中只改动以下内容:在每个区间 k i = [ ( i − 1 ) Δ T , i Δ T ] {{k}_{i}}=left[ left( i-1 right)Delta T,text{ }iDelta T right] ki=[(i−1)ΔT, iΔT]上取左端点的函数值 f ( ( i − 1 ) Δ T ) e − j 2 π u ⋅ ( i − 1 ) Δ T fleft( left( i-1 right)Delta T right){{e}^{-j2pi ucenterdot left( i-1 right)Delta T}} f((i−1)ΔT)e−j2πu⋅(i−1)ΔT。
在
N
Δ
T
=
1
NDelta T=1
NΔT=1的限制下,就可以得到另一条公式
F
2
(
u
)
=
1
N
∑
n
=
0
N
−
1
f
⌢
(
n
)
e
−
j
2
π
u
n
N
,
u
=
0
,
1
,
⋯
,
N
−
1
{{F}_{2}}left( u right)=frac{1}{N}sumlimits_{n=0}^{N-1}{oversetfrown{f}left( n right){{e}^{-j2pi ufrac{n}{N}}}},text{ }u=0,1,cdots ,N-1
F2(u)=N1n=0∑N−1f⌢(n)e−j2πuNn, u=0,1,⋯,N−1
单独视角:IDFT公式的推导
由博文一维连续傅里叶变换和逆变换公式的一种推导,设
f
(
t
)
fleft( t right)
f(t)是一个连续的时间信号,其一维连续Fourier逆变换可取为
f
(
t
)
=
1
2
∫
−
∞
∞
F
(
u
)
e
j
2
π
u
t
d
u
fleft( t right)=frac{1}{2}int_{-infty }^{infty }{Fleft( u right){{e}^{j2pi ut}}du}
f(t)=21∫−∞∞F(u)ej2πutdu
与DFT公式推导过程相似,可以得到IDFT的公式
f
(
n
)
=
1
2
N
∑
u
=
0
N
−
1
F
⌢
(
u
)
e
j
2
π
n
u
+
1
N
,
n
=
0
,
1
,
⋯
,
N
−
1
fleft( n right)=frac{1}{2N}sumlimits_{u=0}^{N-1}{oversetfrown{F}left( u right){{e}^{j2pi nfrac{u+1}{N}}}},text{ }n=0,1,cdots ,N-1
f(n)=2N1u=0∑N−1F⌢(u)ej2πnNu+1, n=0,1,⋯,N−1
或
f
(
n
)
=
1
2
N
∑
u
=
0
N
−
1
F
⌢
(
u
)
e
j
2
π
n
u
N
,
n
=
0
,
1
,
⋯
,
N
−
1
fleft( n right)=frac{1}{2N}sumlimits_{u=0}^{N-1}{oversetfrown{F}left( u right){{e}^{j2pi nfrac{u}{N}}}},text{ }n=0,1,cdots ,N-1
f(n)=2N1u=0∑N−1F⌢(u)ej2πnNu, n=0,1,⋯,N−1
综合视角:DFT, IDFT公式组的系数修正
为了实现 对
f
(
t
)
fleft( t right)
f(t)进行DFT,得到的结果进行IDFT还是得到
f
(
t
)
fleft( t right)
f(t),我们需要考虑DFT和IDFT公式的系数。令
F
(
u
)
=
c
∑
n
=
0
N
−
1
f
(
n
)
e
−
j
2
π
u
n
N
,
u
=
0
,
1
,
⋯
,
N
−
1
f
(
n
)
=
d
∑
u
=
0
N
−
1
F
(
u
)
e
j
2
π
u
n
N
,
n
=
0
,
1
,
⋯
,
N
−
1
begin{aligned} & Fleft( u right)=csumlimits_{n=0}^{N-1}{fleft( n right){{e}^{-jfrac{2pi un}{N}}}},text{ }u=0,1,cdots ,N-1 \ & fleft( n right)=dsumlimits_{u=0}^{N-1}{Fleft( u right){{e}^{jfrac{2pi un}{N}}}},text{ }n=0,1,cdots ,N-1 \ end{aligned}
F(u)=cn=0∑N−1f(n)e−jN2πun, u=0,1,⋯,N−1f(n)=du=0∑N−1F(u)ejN2πun, n=0,1,⋯,N−1
设
F
→
=
[
F
(
0
)
,
F
(
1
)
,
⋯
,
F
(
n
−
1
)
]
T
f
→
=
[
f
(
0
)
,
f
(
1
)
,
⋯
,
f
(
n
−
1
)
]
T
begin{aligned} & overrightarrow{F}={{left[ Fleft( 0 right),text{ }Fleft( 1 right),text{ }cdots ,text{ }Fleft( n-1 right) right]}^{T}} \ & overrightarrow{f}={{left[ fleft( 0 right),text{ }fleft( 1 right),text{ }cdots ,text{ }fleft( n-1 right) right]}^{T}} \ end{aligned}
F=[F(0), F(1), ⋯, F(n−1)]Tf=[f(0), f(1), ⋯, f(n−1)]T
则有
F
→
=
A
f
→
f
→
=
B
F
→
begin{aligned} & overrightarrow{F}=Aoverrightarrow{f} \ & overrightarrow{f}=Boverrightarrow{F} \ end{aligned}
F=Aff=BF
其中
A
N
×
N
=
c
(
e
−
j
2
π
N
⋅
0
⋅
0
e
−
j
2
π
N
⋅
0
⋅
1
⋯
e
−
j
2
π
N
⋅
0
⋅
(
N
−
1
)
e
−
j
2
π
N
⋅
1
⋅
0
e
−
j
2
π
N
⋅
1
⋅
1
⋯
e
−
j
2
π
N
⋅
1
⋅
(
N
−
1
)
⋮
⋮
⋱
⋮
e
−
j
2
π
N
⋅
(
N
−
1
)
⋅
0
e
−
j
2
π
N
⋅
(
N
−
1
)
⋅
1
⋯
e
−
j
2
π
N
⋅
(
N
−
1
)
⋅
(
N
−
1
)
)
B
N
×
N
=
d
(
e
j
2
π
N
⋅
0
⋅
0
e
j
2
π
N
⋅
0
⋅
1
⋯
e
j
2
π
N
⋅
0
⋅
(
N
−
1
)
e
j
2
π
N
⋅
1
⋅
0
e
j
2
π
N
⋅
1
⋅
1
⋯
e
j
2
π
N
⋅
1
⋅
(
N
−
1
)
⋮
⋮
⋱
⋮
e
j
2
π
N
⋅
(
N
−
1
)
⋅
0
e
j
2
π
N
⋅
(
N
−
1
)
⋅
1
⋯
e
j
2
π
N
⋅
(
N
−
1
)
⋅
(
N
−
1
)
)
begin{aligned} & {{A}_{Ntimes N}}=cleft( begin{matrix} {{e}^{-jfrac{2pi }{N}centerdot 0centerdot 0}} & {{e}^{-jfrac{2pi }{N}centerdot 0centerdot 1}} & cdots & {{e}^{-jfrac{2pi }{N}centerdot 0centerdot left( N-1 right)}} \ {{e}^{-jfrac{2pi }{N}centerdot 1centerdot 0}} & {{e}^{-jfrac{2pi }{N}centerdot 1centerdot 1}} & cdots & {{e}^{-jfrac{2pi }{N}centerdot 1centerdot left( N-1 right)}} \ vdots & vdots & ddots & vdots \ {{e}^{-jfrac{2pi }{N}centerdot left( N-1 right)centerdot 0}} & {{e}^{-jfrac{2pi }{N}centerdot left( N-1 right)centerdot 1}} & cdots & {{e}^{-jfrac{2pi }{N}centerdot left( N-1 right)centerdot left( N-1 right)}} \ end{matrix} right) \ & {{B}_{Ntimes N}}=dleft( begin{matrix} {{e}^{jfrac{2pi }{N}centerdot 0centerdot 0}} & {{e}^{jfrac{2pi }{N}centerdot 0centerdot 1}} & cdots & {{e}^{jfrac{2pi }{N}centerdot 0centerdot left( N-1 right)}} \ {{e}^{jfrac{2pi }{N}centerdot 1centerdot 0}} & {{e}^{jfrac{2pi }{N}centerdot 1centerdot 1}} & cdots & {{e}^{jfrac{2pi }{N}centerdot 1centerdot left( N-1 right)}} \ vdots & vdots & ddots & vdots \ {{e}^{jfrac{2pi }{N}centerdot left( N-1 right)centerdot 0}} & {{e}^{jfrac{2pi }{N}centerdot left( N-1 right)centerdot 1}} & cdots & {{e}^{jfrac{2pi }{N}centerdot left( N-1 right)centerdot left( N-1 right)}} \ end{matrix} right) \ end{aligned}
AN×N=c⎝⎜⎜⎜⎛e−jN2π⋅0⋅0e−jN2π⋅1⋅0⋮e−jN2π⋅(N−1)⋅0e−jN2π⋅0⋅1e−jN2π⋅1⋅1⋮e−jN2π⋅(N−1)⋅1⋯⋯⋱⋯e−jN2π⋅0⋅(N−1)e−jN2π⋅1⋅(N−1)⋮e−jN2π⋅(N−1)⋅(N−1)⎠⎟⎟⎟⎞BN×N=d⎝⎜⎜⎜⎛ejN2π⋅0⋅0ejN2π⋅1⋅0⋮ejN2π⋅(N−1)⋅0ejN2π⋅0⋅1ejN2π⋅1⋅1⋮ejN2π⋅(N−1)⋅1⋯⋯⋱⋯ejN2π⋅0⋅(N−1)ejN2π⋅1⋅(N−1)⋮ejN2π⋅(N−1)⋅(N−1)⎠⎟⎟⎟⎞
显然有
F
→
=
A
f
→
f
→
=
B
F
→
}
⇒
F
→
=
(
A
B
)
F
→
left. begin{aligned} & overrightarrow{F}=Aoverrightarrow{f} \ & overrightarrow{f}=Boverrightarrow{F} \ end{aligned} right}text{ }Rightarrow text{ }overrightarrow{F}=left( AB right)overrightarrow{F}
F=Aff=BF⎭⎬⎫ ⇒ F=(AB)F
于是自然地想要令
A
B
=
I
N
×
N
⇔
{
∀
k
∈
{
0
,
1
,
⋯
,
N
−
1
}
,
c
d
∑
i
=
0
N
−
1
(
e
−
j
2
π
N
⋅
i
⋅
k
⋅
e
j
2
π
N
⋅
i
⋅
k
)
=
c
d
N
=
1
∀
k
1
≠
k
2
,
c
d
∑
i
=
0
N
−
1
(
e
−
j
2
π
N
⋅
i
⋅
k
1
⋅
e
j
2
π
N
⋅
i
⋅
k
2
)
=
c
d
∑
i
=
0
N
−
1
e
j
2
π
(
k
2
−
k
1
)
N
i
=
c
d
1
−
e
j
2
π
(
k
2
−
k
1
)
N
⋅
N
1
−
e
j
2
π
(
k
2
−
k
1
)
N
=
0
⇔
c
d
=
1
N
begin{aligned} & text{ }AB={{I}_{Ntimes N}} \ & Leftrightarrow left{ begin{aligned} & forall kin left{ 0,1,cdots ,N-1 right},text{ }cdsumlimits_{i=0}^{N-1}{left( {{e}^{-jfrac{2pi }{N}centerdot icenterdot k}}centerdot {{e}^{jfrac{2pi }{N}centerdot icenterdot k}} right)}=cdN=1 \ & forall {{k}_{1}}ne {{k}_{2}},text{ }cdsumlimits_{i=0}^{N-1}{left( {{e}^{-jfrac{2pi }{N}centerdot icenterdot {{k}_{1}}}}centerdot {{e}^{jfrac{2pi }{N}centerdot icenterdot {{k}_{2}}}} right)}=cdsumlimits_{i=0}^{N-1}{{{e}^{jfrac{2pi left( {{k}_{2}}-{{k}_{1}} right)}{N}i}}}=cdfrac{1-{{e}^{jfrac{2pi left( {{k}_{2}}-{{k}_{1}} right)}{N}centerdot N}}}{1-{{e}^{jfrac{2pi left( {{k}_{2}}-{{k}_{1}} right)}{N}}}}=0 \ end{aligned} right. \ & Leftrightarrow cd=frac{1}{N} \ end{aligned}
AB=IN×N⇔⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧∀k∈{0,1,⋯,N−1}, cdi=0∑N−1(e−jN2π⋅i⋅k⋅ejN2π⋅i⋅k)=cdN=1∀k1=k2, cdi=0∑N−1(e−jN2π⋅i⋅k1⋅ejN2π⋅i⋅k2)=cdi=0∑N−1ejN2π(k2−k1)i=cd1−ejN2π(k2−k1)1−ejN2π(k2−k1)⋅N=0⇔cd=N1
因此最终我们得到DFT和IDFT的公式为
F
(
u
)
=
c
∑
n
=
0
N
−
1
f
(
n
)
e
−
j
2
π
u
n
N
,
u
=
0
,
1
,
⋯
,
N
−
1
f
(
n
)
=
d
∑
u
=
0
N
−
1
F
(
u
)
e
j
2
π
u
n
N
,
n
=
0
,
1
,
⋯
,
N
−
1
c
d
=
1
N
begin{matrix} Fleft( u right)=csumlimits_{n=0}^{N-1}{fleft( n right){{e}^{-jfrac{2pi un}{N}}}},text{ }u=0,1,cdots ,N-1 \ fleft( n right)=dsumlimits_{u=0}^{N-1}{Fleft( u right){{e}^{jfrac{2pi un}{N}}}},text{ }n=0,1,cdots ,N-1 \ cd=frac{1}{N} \ end{matrix}
F(u)=cn=0∑N−1f(n)e−jN2πun, u=0,1,⋯,N−1f(n)=du=0∑N−1F(u)ejN2πun, n=0,1,⋯,N−1cd=N1
此外,我们指出,对称阵
A
,
B
A,B
A,B不可能为正交矩阵。事实上,有
A
A
T
=
B
B
T
=
O
N
×
N
≠
I
N
×
N
A{{A}^{T}}=B{{B}^{T}}={{O}_{Ntimes N}}ne {{I}_{Ntimes N}}
AAT=BBT=ON×N=IN×N
以
A
A
A为例子,计算
A
A
T
A{{A}^{T}}
AAT如下。
{
∀
k
∈
{
0
,
1
,
⋯
,
N
−
1
}
,
c
2
∑
i
=
0
N
−
1
(
e
−
j
2
π
N
⋅
i
⋅
k
)
2
=
c
2
∑
i
=
0
N
−
1
e
−
j
4
π
k
N
⋅
i
=
c
2
1
−
e
−
j
4
π
k
N
⋅
N
1
−
e
−
j
4
π
k
N
=
0
∀
k
1
≠
k
2
,
c
2
∑
i
=
0
N
−
1
(
e
−
j
2
π
N
⋅
i
⋅
k
1
)
(
e
−
j
2
π
N
⋅
i
⋅
k
2
)
=
c
2
∑
i
=
0
N
−
1
e
−
j
2
π
(
k
1
+
k
2
)
N
⋅
i
=
c
2
1
−
e
−
j
2
π
(
k
1
+
k
2
)
N
⋅
N
1
−
e
−
j
2
π
(
k
1
+
k
2
)
N
=
0
⇒
A
A
T
=
O
N
×
N
begin{aligned} & left{ begin{aligned} & forall kin left{ 0,1,cdots ,N-1 right},text{ }{{c}^{2}}sumlimits_{i=0}^{N-1}{{{left( {{e}^{-jfrac{2pi }{N}centerdot icenterdot k}} right)}^{2}}}={{c}^{2}}sumlimits_{i=0}^{N-1}{{{e}^{-jfrac{4pi k}{N}centerdot i}}}={{c}^{2}}frac{1-{{e}^{-jfrac{4pi k}{N}centerdot N}}}{1-{{e}^{-jfrac{4pi k}{N}}}}=0 \ & forall {{k}_{1}}ne {{k}_{2}},text{ }{{c}^{2}}sumlimits_{i=0}^{N-1}{left( {{e}^{-jfrac{2pi }{N}centerdot icenterdot {{k}_{1}}}} right)left( {{e}^{-jfrac{2pi }{N}centerdot icenterdot {{k}_{2}}}} right)}={{c}^{2}}sumlimits_{i=0}^{N-1}{{{e}^{-jfrac{2pi left( {{k}_{1}}+{{k}_{2}} right)}{N}centerdot i}}}={{c}^{2}}frac{1-{{e}^{-jfrac{2pi left( {{k}_{1}}+{{k}_{2}} right)}{N}centerdot N}}}{1-{{e}^{-jfrac{2pi left( {{k}_{1}}+{{k}_{2}} right)}{N}}}}=0 \ end{aligned} right. \ & \ & Rightarrow text{ }A{{A}^{T}}={{O}_{Ntimes N}} \ end{aligned}
⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧∀k∈{0,1,⋯,N−1}, c2i=0∑N−1(e−jN2π⋅i⋅k)2=c2i=0∑N−1e−jN4πk⋅i=c21−e−jN4πk1−e−jN4πk⋅N=0∀k1=k2, c2i=0∑N−1(e−jN2π⋅i⋅k1)(e−jN2π⋅i⋅k2)=c2i=0∑N−1e−jN2π(k1+k2)⋅i=c21−e−jN2π(k1+k2)1−e−jN2π(k1+k2)⋅N=0⇒ AAT=ON×N
最后
以上就是默默西装为你收集整理的一维离散傅里叶变换(DFT)和逆变换(IDFT)公式的一种推导单独视角:DFT公式的推导单独视角:IDFT公式的推导综合视角:DFT, IDFT公式组的系数修正的全部内容,希望文章能够帮你解决一维离散傅里叶变换(DFT)和逆变换(IDFT)公式的一种推导单独视角:DFT公式的推导单独视角:IDFT公式的推导综合视角:DFT, IDFT公式组的系数修正所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复