概述
- Leaderboard
- Papers
- R-CNN
- MultiBox
- SPP-Net
- DeepID-Net
- NoC
- Fast R-CNN
- DeepBox
- MR-CNN
- Faster R-CNN
- YOLO
- AttentionNet
- DenseBox
- SSD
- Inside-Outside Net (ION)
- G-CNN
- HyperNet
- MultiPathNet
- CRAFT
- OHEM
- R-FCN
- MS-CNN
- PVANET
- GBD-Net
- StuffNet
- Feature Pyramid Network (FPN)
- Detection From Video
- T-CNN
- Datasets
- Object Detection in 3D
- Salient Object Detection
- Specific Object Deteciton
- Face Deteciton
- UnitBox
- MTCNN
- Datasets / Benchmarks
- Facial Point / Landmark Detection
- People Detection
- Person Head Detection
- Pedestrian Detection
- Vehicle Detection
- Traffic-Sign Detection
- Boundary / Edge / Contour Detection
- Skeleton Detection
- Fruit Detection
- Others
- Face Deteciton
- Object Proposal
- Localization
- Tutorials
- Projects
- Blogs
Method | VOC2007 | VOC2010 | VOC2012 | ILSVRC 2013 | MSCOCO 2015 | Speed |
---|---|---|---|---|---|---|
OverFeat | 24.3% | |||||
R-CNN (AlexNet) | 58.5% | 53.7% | 53.3% | 31.4% | ||
R-CNN (VGG16) | 66.0% | |||||
SPP_net(ZF-5) | 54.2%(1-model), 60.9%(2-model) | 31.84%(1-model), 35.11%(6-model) | ||||
DeepID-Net | 64.1% | 50.3% | ||||
NoC | 73.3% | 68.8% | ||||
Fast-RCNN (VGG16) | 70.0% | 68.8% | 68.4% | 19.7%(@[0.5-0.95]), 35.9%(@0.5) | ||
MR-CNN | 78.2% | 73.9% | ||||
Faster-RCNN (VGG16) | 78.8% | 75.9% | 21.9%(@[0.5-0.95]), 42.7%(@0.5) | 198ms | ||
Faster-RCNN (ResNet-101) | 85.6% | 83.8% | 37.4%(@[0.5-0.95]), 59.0%(@0.5) | |||
SSD300 (VGG16) | 72.1% | 58 fps | ||||
SSD500 (VGG16) | 75.1% | 23 fps | ||||
ION | 79.2% | 76.4% | ||||
AZ-Net | 70.4% | 22.3%(@[0.5-0.95]), 41.0%(@0.5) | ||||
CRAFT | 75.7% | 71.3% | 48.5% | |||
OHEM | 78.9% | 76.3% | 25.5%(@[0.5-0.95]), 45.9%(@0.5) | |||
R-FCN (ResNet-50) | 77.4% | 0.12sec(K40), 0.09sec(TitianX) | ||||
R-FCN (ResNet-101) | 79.5% | 0.17sec(K40), 0.12sec(TitianX) | ||||
R-FCN (ResNet-101),multi sc train | 83.6% | 82.0% | 31.5%(@[0.5-0.95]), 53.2%(@0.5) | |||
PVANet 9.0 | 81.8% | 82.5% | 750ms(CPU), 46ms(TitianX) |
Leaderboard
Detection Results: VOC2012
- intro: Competition “comp4” (train on own data)
- homepage: http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4
Papers
Deep Neural Networks for Object Detection
- paper: http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
- intro: A deep version of the sliding window method, predicts bounding box directly from each location of the topmost feature map after knowing the confidences of the underlying object categories.
- intro: training a convolutional network to simultaneously classify, locate and detect objects in images can boost the classification accuracy and the detection and localization accuracy of all tasks
- arxiv: http://arxiv.org/abs/1312.6229
- github: https://github.com/sermanet/OverFeat
- code: http://cilvr.nyu.edu/doku.php?id=software:overfeat:start
R-CNN
Rich feature hierarchies for accurate object detection and semantic segmentation
- intro: R-CNN
- arxiv: http://arxiv.org/abs/1311.2524
- supp: http://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr-supp.pdf
- slides: http://www.image-net.org/challenges/LSVRC/2013/slides/r-cnn-ilsvrc2013-workshop.pdf
- slides: http://www.cs.berkeley.edu/~rbg/slides/rcnn-cvpr14-slides.pdf
- github: https://github.com/rbgirshick/rcnn
- notes: http://zhangliliang.com/2014/07/23/paper-note-rcnn/
- caffe-pr(“Make R-CNN the Caffe detection example”):https://github.com/BVLC/caffe/pull/482
MultiBox
Scalable Object Detection using Deep Neural Networks
- intro: MultiBox. Train a CNN to predict Region of Interest.
- arxiv: http://arxiv.org/abs/1312.2249
- github: https://github.com/google/multibox
- blog: https://research.googleblog.com/2014/12/high-quality-object-detection-at-scale.html
Scalable, High-Quality Object Detection
- intro: MultiBox
- arxiv: http://arxiv.org/abs/1412.1441
- github: https://github.com/google/multibox
SPP-Net
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
- intro: ECCV 2014 / TPAMI 2015
- arxiv: http://arxiv.org/abs/1406.4729
- github: https://github.com/ShaoqingRen/SPP_net
- notes: http://zhangliliang.com/2014/09/13/paper-note-sppnet/
Learning Rich Features from RGB-D Images for Object Detection and Segmentation
- arxiv: http://arxiv.org/abs/1407.5736
DeepID-Net
DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection
- intro: PAMI 2016
- intro: an extension of R-CNN. box pre-training, cascade on region proposals, deformation layers and context representations
- project page:http://www.ee.cuhk.edu.hk/%CB%9Cwlouyang/projects/imagenetDeepId/index.html
- arxiv: http://arxiv.org/abs/1412.5661
Object Detectors Emerge in Deep Scene CNNs
- arxiv: http://arxiv.org/abs/1412.6856
- paper: https://www.robots.ox.ac.uk/~vgg/rg/papers/zhou_iclr15.pdf
- paper: https://people.csail.mit.edu/khosla/papers/iclr2015_zhou.pdf
- slides: http://places.csail.mit.edu/slide_iclr2015.pdf
segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection
- intro: CVPR 2015
- project(code+data): https://www.cs.toronto.edu/~yukun/segdeepm.html
- arxiv: https://arxiv.org/abs/1502.04275
- github: https://github.com/YknZhu/segDeepM
NoC
Object Detection Networks on Convolutional Feature Maps
- intro: TPAMI 2015
- arxiv: http://arxiv.org/abs/1504.06066
Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction
- arxiv: http://arxiv.org/abs/1504.03293
- slides: http://www.ytzhang.net/files/publications/2015-cvpr-det-slides.pdf
- github: https://github.com/YutingZhang/fgs-obj
Fast R-CNN
Fast R-CNN
- arxiv: http://arxiv.org/abs/1504.08083
- slides: http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf
- github: https://github.com/rbgirshick/fast-rcnn
- webcam demo: https://github.com/rbgirshick/fast-rcnn/pull/29
- notes: http://zhangliliang.com/2015/05/17/paper-note-fast-rcnn/
- notes: http://blog.csdn.net/linj_m/article/details/48930179
- github(“Fast R-CNN in MXNet”): https://github.com/precedenceguo/mx-rcnn
- github: https://github.com/mahyarnajibi/fast-rcnn-torch
- github: https://github.com/apple2373/chainer-simple-fast-rnn
- github(Tensorflow): https://github.com/zplizzi/tensorflow-fast-rcnn
DeepBox
DeepBox: Learning Objectness with Convolutional Networks
- arxiv: http://arxiv.org/abs/1505.02146
- github: https://github.com/weichengkuo/DeepBox
MR-CNN
Object detection via a multi-region & semantic segmentation-aware CNN model
- intro: ICCV 2015. MR-CNN
- arxiv: http://arxiv.org/abs/1505.01749
- github: https://github.com/gidariss/mrcnn-object-detection
- notes: http://zhangliliang.com/2015/05/17/paper-note-ms-cnn/
- notes: http://blog.cvmarcher.com/posts/2015/05/17/multi-region-semantic-segmentation-aware-cnn/
- my notes: Who can tell me why there are a bunch of duplicated sentences in section 7.2 “Detection error analysis”? :-D
Faster R-CNN
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
- intro: NIPS 2015
- arxiv: http://arxiv.org/abs/1506.01497
- gitxiv: http://www.gitxiv.com/posts/8pfpcvefDYn2gSgXk/faster-r-cnn-towards-real-time-object-detection-with-region
- slides: http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w05-FasterR-CNN.pdf
- github: https://github.com/ShaoqingRen/faster_rcnn
- github: https://github.com/rbgirshick/py-faster-rcnn
- github: https://github.com/mitmul/chainer-faster-rcnn
- github(Torch): https://github.com/andreaskoepf/faster-rcnn.torch
- github(Torch): https://github.com/ruotianluo/Faster-RCNN-Densecap-torch
- github(Tensorflow): https://github.com/smallcorgi/Faster-RCNN_TF
- github(tensorflow): https://github.com/CharlesShang/TFFRCNN
Faster R-CNN in MXNet with distributed implementation and data parallelization
- github: https://github.com/dmlc/mxnet/tree/master/example/rcnn
YOLO
You Only Look Once: Unified, Real-Time Object Detection
- intro: YOLO uses the whole topmost feature map to predict both confidences for multiple categories and bounding boxes (which are shared for these categories).
- arxiv: http://arxiv.org/abs/1506.02640
- code: http://pjreddie.com/darknet/yolo/
- github: https://github.com/pjreddie/darknet
- reddit:https://www.reddit.com/r/MachineLearning/comments/3a3m0o/realtime_object_detection_with_yolo/
- github: https://github.com/gliese581gg/YOLO_tensorflow
- github: https://github.com/xingwangsfu/caffe-yolo
- github: https://github.com/frankzhangrui/Darknet-Yolo
- github: https://github.com/BriSkyHekun/py-darknet-yolo
- github: https://github.com/tommy-qichang/yolo.torch
- github: https://github.com/frischzenger/yolo-windows
- gtihub: https://github.com/AlexeyAB/yolo-windows
Start Training YOLO with Our Own Data
- intro: train with customized data and class numbers/labels. Linux / Windows version for darknet.
- blog: http://guanghan.info/blog/en/my-works/train-yolo/
- github: https://github.com/Guanghan/darknet
R-CNN minus R
- arxiv: http://arxiv.org/abs/1506.06981
AttentionNet
AttentionNet: Aggregating Weak Directions for Accurate Object Detection
- intro: ICCV 2015
- intro: state-of-the-art performance of 65% (AP) on PASCAL VOC 2007/2012 human detection task
- arxiv: http://arxiv.org/abs/1506.07704
- slides: https://www.robots.ox.ac.uk/~vgg/rg/slides/AttentionNet.pdf
- slides: http://image-net.org/challenges/talks/lunit-kaist-slide.pdf
DenseBox
DenseBox: Unifying Landmark Localization with End to End Object Detection
- arxiv: http://arxiv.org/abs/1509.04874
- demo: http://pan.baidu.com/s/1mgoWWsS
- KITTI result: http://www.cvlibs.net/datasets/kitti/eval_object.php
SSD
SSD: Single Shot MultiBox Detector
- arxiv: http://arxiv.org/abs/1512.02325
- paper: http://www.cs.unc.edu/~wliu/papers/ssd.pdf
- github: https://github.com/weiliu89/caffe/tree/ssd
- video: http://weibo.com/p/2304447a2326da963254c963c97fb05dd3a973
- github(MXNet): https://github.com/zhreshold/mxnet-ssd
- github: https://github.com/zhreshold/mxnet-ssd.cpp
- github(Keras): https://github.com/rykov8/ssd_keras
为什么SSD(Single Shot MultiBox Detector)对小目标的检测效果不好?
- zhihu: https://www.zhihu.com/question/49455386
Inside-Outside Net (ION)
Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks
- intro: “0.8s per image on a Titan X GPU (excluding proposal generation) without two-stage bounding-box regression and 1.15s per image with it”.
- arxiv: http://arxiv.org/abs/1512.04143
- slides: http://www.seanbell.ca/tmp/ion-coco-talk-bell2015.pdf
- coco-leaderboard: http://mscoco.org/dataset/#detections-leaderboard
Adaptive Object Detection Using Adjacency and Zoom Prediction
- intro: CVPR 2016. AZ-Net
- arxiv: http://arxiv.org/abs/1512.07711
- github: https://github.com/luyongxi/az-net
- youtube: https://www.youtube.com/watch?v=YmFtuNwxaNM
G-CNN
G-CNN: an Iterative Grid Based Object Detector
- arxiv: http://arxiv.org/abs/1512.07729
Factors in Finetuning Deep Model for object detection Factors in Finetuning Deep Model for Object Detection with Long-tail Distribution
- intro: CVPR 2016.rank 3rd for provided data and 2nd for external data on ILSVRC 2015 object detection
- project page:http://www.ee.cuhk.edu.hk/~wlouyang/projects/ImageNetFactors/CVPR16.html
- arxiv: http://arxiv.org/abs/1601.05150
We don’t need no bounding-boxes: Training object class detectors using only human verification
- arxiv: http://arxiv.org/abs/1602.08405
HyperNet
HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection
- arxiv: http://arxiv.org/abs/1604.00600
MultiPathNet
A MultiPath Network for Object Detection
- intro: BMVC 2016. Facebook AI Research (FAIR)
- arxiv: http://arxiv.org/abs/1604.02135
- github: https://github.com/facebookresearch/multipathnet
CRAFT
CRAFT Objects from Images
- intro: CVPR 2016. Cascade Region-proposal-network And FasT-rcnn. an extension of Faster R-CNN
- project page: http://byangderek.github.io/projects/craft.html
- arxiv: https://arxiv.org/abs/1604.03239
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yang_CRAFT_Objects_From_CVPR_2016_paper.pdf
- github: https://github.com/byangderek/CRAFT
OHEM
Training Region-based Object Detectors with Online Hard Example Mining
- intro: CVPR 2016 Oral. Online hard example mining (OHEM)
- arxiv: http://arxiv.org/abs/1604.03540
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shrivastava_Training_Region-Based_Object_CVPR_2016_paper.pdf
Track and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object Detection
- intro: CVPR 2016
- arxiv: http://arxiv.org/abs/1604.05766
Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers
http://www-personal.umich.edu/~wgchoi/SDP-CRC_camready.pdf
R-FCN
R-FCN: Object Detection via Region-based Fully Convolutional Networks
- arxiv: http://arxiv.org/abs/1605.06409
- github: https://github.com/daijifeng001/R-FCN
- github: https://github.com/Orpine/py-R-FCN
Weakly supervised object detection using pseudo-strong labels
- arxiv: http://arxiv.org/abs/1607.04731
Recycle deep features for better object detection
- arxiv: http://arxiv.org/abs/1607.05066
MS-CNN
A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection
- intro: ECCV 2016
- intro: 640×480: 15 fps, 960×720: 8 fps
- arxiv: http://arxiv.org/abs/1607.07155
- github: https://github.com/zhaoweicai/mscnn
- poster: http://www.eccv2016.org/files/posters/P-2B-38.pdf
Multi-stage Object Detection with Group Recursive Learning
- intro: VOC2007: 78.6%, VOC2012: 74.9%
- arxiv: http://arxiv.org/abs/1608.05159
Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection
- intro: SubCNN
- arxiv: http://arxiv.org/abs/1604.04693
- github: https://github.com/yuxng/SubCNN
PVANET
PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection
- intro: “less channels with more layers”, concatenated ReLU, Inception, and HyperNet, batch normalization, residual connections
- arxiv: http://arxiv.org/abs/1608.08021
- github: https://github.com/sanghoon/pva-faster-rcnn
- leaderboard(PVANet 9.0): http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4
PVANet: Lightweight Deep Neural Networks for Real-time Object Detection
- intro: Presented at NIPS 2016 Workshop on Efficient Methods for Deep Neural Networks (EMDNN). Continuation of arXiv:1608.08021
- arxiv: https://arxiv.org/abs/1611.08588
GBD-Net
Gated Bi-directional CNN for Object Detection
- intro: The Chinese University of Hong Kong & Sensetime Group Limited
- paper: http://link.springer.com/chapter/10.1007/978-3-319-46478-7_22
- mirror: https://pan.baidu.com/s/1dFohO7v
Crafting GBD-Net for Object Detection
- intro: winner of the ImageNet object detection challenge of 2016. CUImage and CUVideo
- intro: gated bi-directional CNN (GBD-Net)
- arxiv: https://arxiv.org/abs/1610.02579
- github: https://github.com/craftGBD/craftGBD
StuffNet
StuffNet: Using ‘Stuff’ to Improve Object Detection
- arxiv: https://arxiv.org/abs/1610.05861
Generalized Haar Filter based Deep Networks for Real-Time Object Detection in Traffic Scene
- arxiv: https://arxiv.org/abs/1610.09609
Hierarchical Object Detection with Deep Reinforcement Learning
- intro: Deep Reinforcement Learning Workshop (NIPS 2016)
- project page: https://imatge-upc.github.io/detection-2016-nipsws/
- arxiv: https://arxiv.org/abs/1611.03718
- github: https://github.com/imatge-upc/detection-2016-nipsws
Learning to detect and localize many objects from few examples
- arxiv: https://arxiv.org/abs/1611.05664
Speed/accuracy trade-offs for modern convolutional object detectors
- intro: Google Research
- arxiv: https://arxiv.org/abs/1611.10012
SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving
- arxiv: https://arxiv.org/abs/1612.01051
Feature Pyramid Network (FPN)
Feature Pyramid Networks for Object Detection
- intro: Facebook AI Research
- arxiv: https://arxiv.org/abs/1612.03144
Detection From Video
Learning Object Class Detectors from Weakly Annotated Video
- intro: CVPR 2012
- paper:https://www.vision.ee.ethz.ch/publications/papers/proceedings/eth_biwi_00905.pdf
Analysing domain shift factors between videos and images for object detection
- arxiv: https://arxiv.org/abs/1501.01186
Video Object Recognition
- slides:http://vision.princeton.edu/courses/COS598/2015sp/slides/VideoRecog/Video%20Object%20Recognition.pptx
Deep Learning for Saliency Prediction in Natural Video
- intro: Submitted on 12 Jan 2016
- keywords: Deep learning, saliency map, optical flow, convolution network, contrast features
- paper: https://hal.archives-ouvertes.fr/hal-01251614/document
T-CNN
T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos
- intro: Winning solution in ILSVRC2015 Object Detection from Video(VID) Task
- arxiv: http://arxiv.org/abs/1604.02532
- github: https://github.com/myfavouritekk/T-CNN
Object Detection from Video Tubelets with Convolutional Neural Networks
- intro: CVPR 2016 Spotlight paper
- arxiv: https://arxiv.org/abs/1604.04053
- paper: http://www.ee.cuhk.edu.hk/~wlouyang/Papers/KangVideoDet_CVPR16.pdf
- gihtub: https://github.com/myfavouritekk/vdetlib
Object Detection in Videos with Tubelets and Multi-context Cues
- intro: SenseTime Group
- slides: http://www.ee.cuhk.edu.hk/~xgwang/CUvideo.pdf
- slides: http://image-net.org/challenges/talks/Object%20Detection%20in%20Videos%20with%20Tubelets%20and%20Multi-context%20Cues%20-%20Final.pdf
Context Matters: Refining Object Detection in Video with Recurrent Neural Networks
- intro: BMVC 2016
- keywords: pseudo-labeler
- arxiv: http://arxiv.org/abs/1607.04648
- paper: http://vision.cornell.edu/se3/wp-content/uploads/2016/07/video_object_detection_BMVC.pdf
CNN Based Object Detection in Large Video Images
- intro: WangTao @ 爱奇艺
- keywords: object retrieval, object detection, scene classification
- slides: http://on-demand.gputechconf.com/gtc/2016/presentation/s6362-wang-tao-cnn-based-object-detection-large-video-images.pdf
Datasets
YouTube-Objects dataset v2.2
- homepage: http://calvin.inf.ed.ac.uk/datasets/youtube-objects-dataset/
ILSVRC2015: Object detection from video (VID)
- homepage: http://vision.cs.unc.edu/ilsvrc2015/download-videos-3j16.php#vid
Object Detection in 3D
Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks
- arxiv: https://arxiv.org/abs/1609.06666
Salient Object Detection
This task involves predicting the salient regions of an image given by human eye fixations.
Best Deep Saliency Detection Models (CVPR 2016 & 2015)
http://i.cs.hku.hk/~yzyu/vision.html
Large-scale optimization of hierarchical features for saliency prediction in natural images
- paper: http://coxlab.org/pdfs/cvpr2014_vig_saliency.pdf
Predicting Eye Fixations using Convolutional Neural Networks
- paper: http://www.escience.cn/system/file?fileId=72648
Saliency Detection by Multi-Context Deep Learning
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zhao_Saliency_Detection_by_2015_CVPR_paper.pdf
DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection
- arxiv: http://arxiv.org/abs/1510.05484
SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection
- paper: www.shengfenghe.com/supercnn-a-superpixelwise-convolutional-neural-network-for-salient-object-detection.html
Shallow and Deep Convolutional Networks for Saliency Prediction
- arxiv: http://arxiv.org/abs/1603.00845
- github: https://github.com/imatge-upc/saliency-2016-cvpr
Recurrent Attentional Networks for Saliency Detection
- intro: CVPR 2016. recurrent attentional convolutional-deconvolution network (RACDNN)
- arxiv: http://arxiv.org/abs/1604.03227
Two-Stream Convolutional Networks for Dynamic Saliency Prediction
- arxiv: http://arxiv.org/abs/1607.04730
Unconstrained Salient Object Detection
Unconstrained Salient Object Detection via Proposal Subset Optimization
- intro: CVPR 2016
- project page: http://cs-people.bu.edu/jmzhang/sod.html
- paper: http://cs-people.bu.edu/jmzhang/SOD/CVPR16SOD_camera_ready.pdf
- github: https://github.com/jimmie33/SOD
- caffe model zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo#cnn-object-proposal-models-for-salient-object-detection
DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_DHSNet_Deep_Hierarchical_CVPR_2016_paper.pdf
Salient Object Subitizing
- intro: CVPR 2015
- intro: predicting the existence and the number of salient objects in an image using holistic cues
- project page: http://cs-people.bu.edu/jmzhang/sos.html
- arxiv: http://arxiv.org/abs/1607.07525
- paper: http://cs-people.bu.edu/jmzhang/SOS/SOS_preprint.pdf
- caffe model zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo#cnn-models-for-salient-object-subitizing
Deeply-Supervised Recurrent Convolutional Neural Network for Saliency Detection
- intro: ACMMM 2016. deeply-supervised recurrent convolutional neural network (DSRCNN)
- arxiv: http://arxiv.org/abs/1608.05177
Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs
- intro: ECCV 2016
- arxiv: http://arxiv.org/abs/1608.05186
Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection
- arxiv: http://arxiv.org/abs/1608.08029
A Deep Multi-Level Network for Saliency Prediction
- arxiv: http://arxiv.org/abs/1609.01064
Visual Saliency Detection Based on Multiscale Deep CNN Features
- intro: IEEE Transactions on Image Processing
- arxiv: http://arxiv.org/abs/1609.02077
A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection
- intro: DSCLRCN
- arxiv: https://arxiv.org/abs/1610.01708
Deeply supervised salient object detection with short connections
- arxiv: https://arxiv.org/abs/1611.04849
Weakly Supervised Top-down Salient Object Detection
- intro: Nanyang Technological University
- arxiv: https://arxiv.org/abs/1611.05345
Specific Object Deteciton
Face Deteciton
Multi-view Face Detection Using Deep Convolutional Neural Networks
- intro: Yahoo
- arxiv: http://arxiv.org/abs/1502.02766
From Facial Parts Responses to Face Detection: A Deep Learning Approach
- project page: http://personal.ie.cuhk.edu.hk/~ys014/projects/Faceness/Faceness.html
Compact Convolutional Neural Network Cascade for Face Detection
- arxiv: http://arxiv.org/abs/1508.01292
- github: https://github.com/Bkmz21/FD-Evaluation
Face Detection with End-to-End Integration of a ConvNet and a 3D Model
- intro: ECCV 2016
- arxiv: https://arxiv.org/abs/1606.00850
- github(MXNet): https://github.com/tfwu/FaceDetection-ConvNet-3D
Supervised Transformer Network for Efficient Face Detection
- arxiv: http://arxiv.org/abs/1607.05477
UnitBox
UnitBox: An Advanced Object Detection Network
- intro: ACM MM 2016
- arxiv: http://arxiv.org/abs/1608.01471
Bootstrapping Face Detection with Hard Negative Examples
- author: 万韶华 @ 小米.
- intro: Faster R-CNN, hard negative mining. state-of-the-art on the FDDB dataset
- arxiv: http://arxiv.org/abs/1608.02236
Grid Loss: Detecting Occluded Faces
- intro: ECCV 2016
- arxiv: https://arxiv.org/abs/1609.00129
- paper: http://lrs.icg.tugraz.at/pubs/opitz_eccv_16.pdf
- poster: http://www.eccv2016.org/files/posters/P-2A-34.pdf
A Multi-Scale Cascade Fully Convolutional Network Face Detector
- intro: ICPR 2016
- arxiv: http://arxiv.org/abs/1609.03536
MTCNN
Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks
Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks
- project page: https://kpzhang93.github.io/MTCNN_face_detection_alignment/index.html
- arxiv: https://arxiv.org/abs/1604.02878
- github(Matlab): https://github.com/kpzhang93/MTCNN_face_detection_alignment
- github(MXNet): https://github.com/pangyupo/mxnet_mtcnn_face_detection
- github: https://github.com/DaFuCoding/MTCNN_Caffe
Datasets / Benchmarks
FDDB: Face Detection Data Set and Benchmark
- homepage: http://vis-www.cs.umass.edu/fddb/index.html
- results: http://vis-www.cs.umass.edu/fddb/results.html
WIDER FACE: A Face Detection Benchmark
- homepage: http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/
- arxiv: http://arxiv.org/abs/1511.06523
Facial Point / Landmark Detection
Deep Convolutional Network Cascade for Facial Point Detection
- homepage: http://mmlab.ie.cuhk.edu.hk/archive/CNN_FacePoint.htm
- paper: http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTcvpr13.pdf
- github: https://github.com/luoyetx/deep-landmark
A Recurrent Encoder-Decoder Network for Sequential Face Alignment
- intro: ECCV 2016
- arxiv: https://arxiv.org/abs/1608.05477
Detecting facial landmarks in the video based on a hybrid framework
- arxiv: http://arxiv.org/abs/1609.06441
Deep Constrained Local Models for Facial Landmark Detection
- arxiv: https://arxiv.org/abs/1611.08657
People Detection
End-to-end people detection in crowded scenes
- arxiv: http://arxiv.org/abs/1506.04878
- github: https://github.com/Russell91/reinspect
- ipn:http://nbviewer.ipython.org/github/Russell91/ReInspect/blob/master/evaluation_reinspect.ipynb
Detecting People in Artwork with CNNs
- intro: ECCV 2016 Workshops
- arxiv: https://arxiv.org/abs/1610.08871
Person Head Detection
Context-aware CNNs for person head detection
- arxiv: http://arxiv.org/abs/1511.07917
- github: https://github.com/aosokin/cnn_head_detection
Pedestrian Detection
Pedestrian Detection aided by Deep Learning Semantic Tasks
- intro: CVPR 2015
- project page: http://mmlab.ie.cuhk.edu.hk/projects/TA-CNN/
- paper: http://arxiv.org/abs/1412.0069
Deep Learning Strong Parts for Pedestrian Detection
- intro: ICCV 2015. CUHK. DeepParts
- intro: Achieving 11.89% average miss rate on Caltech Pedestrian Dataset
- paper: http://personal.ie.cuhk.edu.hk/~pluo/pdf/tianLWTiccv15.pdf
Deep convolutional neural networks for pedestrian detection
- arxiv: http://arxiv.org/abs/1510.03608
- github: https://github.com/DenisTome/DeepPed
New algorithm improves speed and accuracy of pedestrian detection
- blog: http://www.eurekalert.org/pub_releases/2016-02/uoc–nai020516.php
Pushing the Limits of Deep CNNs for Pedestrian Detection
- intro: “set a new record on the Caltech pedestrian dataset, lowering the log-average miss rate from 11.7% to 8.9%”
- arxiv: http://arxiv.org/abs/1603.04525
A Real-Time Deep Learning Pedestrian Detector for Robot Navigation
- arxiv: http://arxiv.org/abs/1607.04436
A Real-Time Pedestrian Detector using Deep Learning for Human-Aware Navigation
- arxiv: http://arxiv.org/abs/1607.04441
Is Faster R-CNN Doing Well for Pedestrian Detection?
- arxiv: http://arxiv.org/abs/1607.07032
- github: https://github.com/zhangliliang/RPN_BF/tree/RPN-pedestrian
Reduced Memory Region Based Deep Convolutional Neural Network Detection
- intro: IEEE 2016 ICCE-Berlin
- arxiv: http://arxiv.org/abs/1609.02500
Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection
- arxiv: https://arxiv.org/abs/1610.03466
Multispectral Deep Neural Networks for Pedestrian Detection
- intro: BMVC 2016 oral
- arxiv: https://arxiv.org/abs/1611.02644
Vehicle Detection
DAVE: A Unified Framework for Fast Vehicle Detection and Annotation
- intro: ECCV 2016
- arxiv: http://arxiv.org/abs/1607.04564
Traffic-Sign Detection
Traffic-Sign Detection and Classification in the Wild
- project page(code+dataset): http://cg.cs.tsinghua.edu.cn/traffic-sign/
- paper: http://120.52.73.11/www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Traffic-Sign_Detection_and_CVPR_2016_paper.pdf
- code & model: http://cg.cs.tsinghua.edu.cn/traffic-sign/data_model_code/newdata0411.zip
Boundary / Edge / Contour Detection
Holistically-Nested Edge Detection
- intro: ICCV 2015, Marr Prize
- paper: http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Xie_Holistically-Nested_Edge_Detection_ICCV_2015_paper.pdf
- arxiv: http://arxiv.org/abs/1504.06375
- github: https://github.com/s9xie/hed
Unsupervised Learning of Edges
- intro: CVPR 2016. Facebook AI Research
- arxiv: http://arxiv.org/abs/1511.04166
- zn-blog: http://www.leiphone.com/news/201607/b1trsg9j6GSMnjOP.html
Pushing the Boundaries of Boundary Detection using Deep Learning
- arxiv: http://arxiv.org/abs/1511.07386
Convolutional Oriented Boundaries
- intro: ECCV 2016
- arxiv: http://arxiv.org/abs/1608.02755
Richer Convolutional Features for Edge Detection
- intro: richer convolutional features (RCF)
- arxiv: https://arxiv.org/abs/1612.02103
Skeleton Detection
Object Skeleton Extraction in Natural Images by Fusing Scale-associated Deep Side Outputs
- arxiv: http://arxiv.org/abs/1603.09446
- github: https://github.com/zeakey/DeepSkeleton
DeepSkeleton: Learning Multi-task Scale-associated Deep Side Outputs for Object Skeleton Extraction in Natural Images
- arxiv: http://arxiv.org/abs/1609.03659
Fruit Detection
Deep Fruit Detection in Orchards
- arxiv: https://arxiv.org/abs/1610.03677
Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards
- intro: The Journal of Field Robotics in May 2016
- project page: http://confluence.acfr.usyd.edu.au/display/AGPub/
- arxiv: https://arxiv.org/abs/1610.08120
Others
Deep Deformation Network for Object Landmark Localization
- arxiv: http://arxiv.org/abs/1605.01014
Fashion Landmark Detection in the Wild
- arxiv: http://arxiv.org/abs/1608.03049
Deep Learning for Fast and Accurate Fashion Item Detection
- intro: Kuznech Inc.
- intro: MultiBox and Fast R-CNN
- paper:https://kddfashion2016.mybluemix.net/kddfashion_finalSubmissions/Deep%20Learning%20for%20Fast%20and%20Accurate%20Fashion%20Item%20Detection.pdf
Visual Relationship Detection with Language Priors
- intro: ECCV 2016 oral
- paper: https://cs.stanford.edu/people/ranjaykrishna/vrd/vrd.pdf
- github: https://github.com/Prof-Lu-Cewu/Visual-Relationship-Detection
OSMDeepOD - OSM and Deep Learning based Object Detection from Aerial Imagery (formerly known as “OSM-Crosswalk-Detection”)
- github: https://github.com/geometalab/OSMDeepOD
Selfie Detection by Synergy-Constraint Based Convolutional Neural Network
- intro: IEEE SITIS 2016
- arxiv: https://arxiv.org/abs/1611.04357
Associative Embedding:End-to-End Learning for Joint Detection and Grouping
- arxiv: https://arxiv.org/abs/1611.05424
Deep Cuboid Detection: Beyond 2D Bounding Boxes
- intro: CMU & Magic Leap
- arxiv: https://arxiv.org/abs/1611.10010
Object Proposal
DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers
- arxiv: http://arxiv.org/abs/1510.04445
- github: https://github.com/aghodrati/deepproposal
Scale-aware Pixel-wise Object Proposal Networks
- intro: IEEE Transactions on Image Processing
- arxiv: http://arxiv.org/abs/1601.04798
Attend Refine Repeat: Active Box Proposal Generation via In-Out Localization
- intro: AttractioNet
- arxiv: https://arxiv.org/abs/1606.04446
- github: https://github.com/gidariss/AttractioNet
Learning to Segment Object Proposals via Recursive Neural Networks
- arxiv: https://arxiv.org/abs/1612.01057
Localization
Beyond Bounding Boxes: Precise Localization of Objects in Images
- intro: PhD Thesis
- homepage: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.html
- phd-thesis: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.pdf
- github(“SDS using hypercolumns”): https://github.com/bharath272/sds
Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning
- arxiv: http://arxiv.org/abs/1503.00949
Weakly Supervised Object Localization Using Size Estimates
- arxiv: http://arxiv.org/abs/1608.04314
Localizing objects using referring expressions
- intro: ECCV 2016
- keywords: LSTM, multiple instance learning (MIL)
- paper: http://www.umiacs.umd.edu/~varun/files/refexp-ECCV16.pdf
- github: https://github.com/varun-nagaraja/referring-expressions
LocNet: Improving Localization Accuracy for Object Detection
- arxiv: http://arxiv.org/abs/1511.07763
- github: https://github.com/gidariss/LocNet
Learning Deep Features for Discriminative Localization
- homepage: http://cnnlocalization.csail.mit.edu/
- arxiv: http://arxiv.org/abs/1512.04150
- github(Tensorflow): https://github.com/jazzsaxmafia/Weakly_detector
- github: https://github.com/metalbubble/CAM
- github: https://github.com/tdeboissiere/VGG16CAM-keras
ContextLocNet: Context-Aware Deep Network Models for Weakly Supervised Localization
- intro: ECCV 2016
- project page: http://www.di.ens.fr/willow/research/contextlocnet/
- arxiv: http://arxiv.org/abs/1609.04331
- github: https://github.com/vadimkantorov/contextlocnet
Tutorials
Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection
- slides: http://research.microsoft.com/en-us/um/people/kahe/iccv15tutorial/iccv2015_tutorial_convolutional_feature_maps_kaiminghe.pdf
Projects
TensorBox: a simple framework for training neural networks to detect objects in images
- intro: “The basic model implements the simple and robust GoogLeNet-OverFeat algorithm. We additionally provide an implementation of the ReInspect algorithm”
- github: https://github.com/Russell91/TensorBox
Object detection in torch: Implementation of some object detection frameworks in torch
- github: https://github.com/fmassa/object-detection.torch
Using DIGITS to train an Object Detection network
- github: https://github.com/NVIDIA/DIGITS/blob/master/examples/object-detection/README.md
FCN-MultiBox Detector
- intro: Full convolution MultiBox Detector ( like SSD) implemented in Torch.
- github: https://github.com/teaonly/FMD.torch
Blogs
Convolutional Neural Networks for Object Detection
http://rnd.azoft.com/convolutional-neural-networks-object-detection/
Introducing automatic object detection to visual search (Pinterest)
- keywords: Faster R-CNN
- blog: https://engineering.pinterest.com/blog/introducing-automatic-object-detection-visual-search
- demo:https://engineering.pinterest.com/sites/engineering/files/Visual%20Search%20V1%20-%20Video.mp4
- review: https://news.developer.nvidia.com/pinterest-introduces-the-future-of-visual-search/?mkt_tok=eyJpIjoiTnpaa01UWXpPRE0xTURFMiIsInQiOiJJRjcybjkwTmtmallORUhLOFFFODBDclFqUlB3SWlRVXJXb1MrQ013TDRIMGxLQWlBczFIeWg0TFRUdnN2UHY2ZWFiXC9QQVwvQzBHM3B0UzBZblpOSmUyU1FcLzNPWXI4cml2VERwTTJsOFwvOEk9In0%3D
Deep Learning for Object Detection with DIGITS
- blog: https://devblogs.nvidia.com/parallelforall/deep-learning-object-detection-digits/
Analyzing The Papers Behind Facebook’s Computer Vision Approach
- keywords: DeepMask, SharpMask, MultiPathNet
- blog: https://adeshpande3.github.io/adeshpande3.github.io/Analyzing-the-Papers-Behind-Facebook’s-Computer-Vision-Approach/
**Easily Create High Quality Object Detectors with Deep Learning **
- intro: dlib v19.2
- blog: http://blog.dlib.net/2016/10/easily-create-high-quality-object.html
How to Train a Deep-Learned Object Detection Model in the Microsoft Cognitive Toolkit
- blog: https://blogs.technet.microsoft.com/machinelearning/2016/10/25/how-to-train-a-deep-learned-object-detection-model-in-cntk/
- github:https://github.com/Microsoft/CNTK/tree/master/Examples/Image/Detection/FastRCNN
Object Detection in Satellite Imagery, a Low Overhead Approach
- part 1: https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-i-cbd96154a1b7#.2csh4iwx9
- part 2: https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-ii-893f40122f92#.f9b7dgf64
You Only Look Twice — Multi-Scale Object Detection in Satellite Imagery With Convolutional Neural Networks
- part 1: https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-38dad1cf7571#.fmmi2o3of
- part 2: https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-34f72f659588#.nwzarsz1t
Faster R-CNN Pedestrian and Car Detection
- blog: https://bigsnarf.wordpress.com/2016/11/07/faster-r-cnn-pedestrian-and-car-detection/
- ipn: https://gist.github.com/bigsnarfdude/2f7b2144065f6056892a98495644d3e0#file-demo_faster_rcnn_notebook-ipynb
- github: https://github.com/bigsnarfdude/Faster-RCNN_TF
最后
以上就是小巧汽车为你收集整理的目标检测2015 Leaderboard Papers Detection From Video Object Detection in 3D Salient Object Detection Specific Object Deteciton Object Proposal Localization Tutorials Projects Blogs的全部内容,希望文章能够帮你解决目标检测2015 Leaderboard Papers Detection From Video Object Detection in 3D Salient Object Detection Specific Object Deteciton Object Proposal Localization Tutorials Projects Blogs所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复