sklearn python API
- LinearRegression
from sklearn.linear_model import LinearRegression
# 线性回归 #
module = LinearRegression()
module.fit(x, y)
module.score(x, y)
module.predict(test)
- LogisticRegression
from sklearn.linear_model import LogisticRegression
# 逻辑回归 #
module = LogisticRegression()
module.fit(x, y)
module.score(x, y)
module.predict(test)
- KNN
from sklearn.neighbors import KNeighborsClassifier
#K近邻#
from sklearn.neighbors import KNeighborsRegressor
module = KNeighborsClassifier(n_neighbors=6)
module.fit(x, y)
predicted = module.predict(test)
predicted = module.predict_proba(test)
- SVM
from sklearn import svm
#支持向量机#
module = svm.SVC()
module.fit(x, y)
module.score(x, y)
module.predict(test)
module.predict_proba(test)
- naive_bayes
from sklearn.naive_bayes import GaussianNB
#朴素贝叶斯分类器#
module = GaussianNB()
module.fit(x, y)
predicted = module.predict(test)
- DecisionTree
from sklearn import tree
#决策树分类器#
module = tree.DecisionTreeClassifier(criterion='gini')
module.fit(x, y)
module.score(x, y)
module.predict(test)
- K-Means
from sklearn.cluster import KMeans
#kmeans聚类#
module = KMeans(n_clusters=3, random_state=0)
module.fit(x, y)
module.predict(test)
- RandomForest
from sklearn.ensemble import RandomForestClassifier
#随机森林#
from sklearn.ensemble import RandomForestRegressor
module = RandomForestClassifier()
module.fit(x, y)
module.predict(test)
- GBDT
from sklearn.ensemble import GradientBoostingClassifier
#Gradient Boosting 和 AdaBoost算法#
from sklearn.ensemble import GradientBoostingRegressor
module = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=1, random_state=0)
module.fit(x, y)
module.predict(test)
- PCA
from sklearn.decomposition import PCA
#PCA特征降维#
train_reduced = PCA.fit_transform(train)
test_reduced = PCA.transform(test)
最后
以上就是健忘书本最近收集整理的关于机器学习sklearn函数的十大算法的调用sklearn python API的全部内容,更多相关机器学习sklearn函数的十大算法的调用sklearn内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复