我是靠谱客的博主 烂漫仙人掌,最近开发中收集的这篇文章主要介绍pandas中DataFrame的stack()、unstack()和pivot()方法的对比,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

       pandas中,这三种方法都是用来对表格进行重排的,其中stack()是unstack()的逆操作。某种意义上,unstack()方法和pivot()方法是很像的,主要的不同在于,unstack()方法是针对索引或者标签的,即将列索引转成最内层的行索引;而pivot()方法则是针对列的值,即指定某列的值作为行索引,指定某列的值作为列索引,然后再指定哪些列作为索引对应的值。因此,总结起来一句话就是:unstack()针对索引进行操作,pivot()针对值进行操作。但实际上,两者在功能往往可以互相实现。

        unstack(self, level=-1, fill_value=None)、pivot(self, index=None, columns=None, values=None,对比这两个方法的参数,这里要注意的是,对于pivot(),如果参数values指定了不止一列作为值的话,那么生成的DataFrame的列索引就会出现层次索引,最外层的索引为原来的列标签;unstack()没有指定值的参数,会把剩下的列都作为值,即把剩下的列标签都作为最外层的索引,每个索引对应一个子表。

       pivot()方法其实比较容易理解,就是指定相应的列分别作为行、列索引以及值。下面我们通过几张原理图详细说明stack()和unstack(),最后再通过一个具体的例子来对比stack()、unstack()和pivot()这三种方法。

       先看stack(),如图。stack()是将原来的列索引转成了最内层的行索引,这里是多层次索引,其中AB索引对应第三层,即最内层索引。

       再看unstack(),如图。显然,unstack()是stack()的逆操作,这里把最内层的行索引还原成了列索引。但是unstack()中有一个参数可以指定旋转第几层索引,比如unstack(0)就是把第一层行索引转成列索引,但默认的是把最内层索引转层列索引。

       最后,我们在看一个具体的例子。首先我们构造一个如下图的DataFrame对象,现在目的是要把ticker列作为行索引,tradeDate列作为列索引,closeIndex作为值,生成一个新的表格。这可以通过unstack()和pivot()分别实现,我们先看unstack()如何实现。

       我们之前说过,unstack()是针对索引的,因此,我们需要先把ticker和tradeDate这两列的值设置为索引,然后才能对其进行操作,代码如下。利用DataFrame的set_index()方法,并把需要作为index的两列标签的列表作为参数传递给这个方法,就可以把这两列设置为行索引。

       设置成行索引后,我们可以对这个对象用unstack()方法,默认把最内层转为列索引,代码如下。如图输入的结果,已经实现了我们目的,其中closeIndex作为列的最外层索引出现,如果我们再加一条代码df_daily_industry_symbol.set_index(['tradeDate','ticker']).unstack()['closeIndex'],则就会得到closeIndex索引下的表格。

       最后,我们看下如何用pivot()实现这个目的,代码如下。显然,用pivot()方法简单很多,可以直接通过设置相关参数实现。但是这里由于ticker和tradeDate最初就是值而不是索引,索引可以直接这样一行代码解决,若原数据中,这两列本来就是多层次的索引,那么用unstack()就会简单很多,因此,用什么方法取决于原数据的构成。

最后

以上就是烂漫仙人掌为你收集整理的pandas中DataFrame的stack()、unstack()和pivot()方法的对比的全部内容,希望文章能够帮你解决pandas中DataFrame的stack()、unstack()和pivot()方法的对比所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(62)

评论列表共有 0 条评论

立即
投稿
返回
顶部