我是靠谱客的博主 淡然红酒,最近开发中收集的这篇文章主要介绍pandas 数据索引与选取,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

本文转载自: http://www.cnblogs.com/hhh5460/p/5595616.html 作者:hhh5460 转载请注明该声明。

我们对 DataFrame 进行选择,大抵从这三个层次考虑:行列、区域、单元格。
其对应使用的方法如下:
一. 行,列 --> df[]
二. 区域   --> df.loc[], df.iloc[], df.ix[]
三. 单元格 --> df.at[], df.iat[]

 

下面开始练习:

import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randn(6,4), index=list('abcdef'), columns=list('ABCD'))


1. df[]:

一维
行维度:
    整数切片、标签切片、<布尔数组>
列维度:
    标签索引、标签列表、Callable

df[:3]
df['a':'c']
df[[True,True,True,False,False,False]] # 前三行(布尔数组长度等于行数)
df[df['A']>0] # A列值大于0的行
df[(df['A']>0) | (df['B']>0)] # A列值大于0,或者B列大于0的行
df[(df['A']>0) & (df['C']>0)] # A列值大于0,并且C列大于0的行

 

df['A']
df[['A','B']]
df[lambda df: df.columns[0]] # Callable


2. df.loc[]

二维,先行后列
行维度:
    标签索引、标签切片、标签列表、<布尔数组>、Callable
列维度:
    标签索引、标签切片、标签列表、<布尔数组>、Callable
    

df.loc['a', :]
df.loc['a':'d', :]
df.loc[['a','b','c'], :]
df.loc[[True,True,True,False,False,False], :] # 前三行(布尔数组长度等于行数)
df.loc[df['A']>0, :]
df.loc[df.loc[:,'A']>0, :]
df.loc[df.iloc[:,0]>0, :]
df.loc[lambda _df: _df.A > 0, :]

 

df.loc[:, 'A']
df.loc[:, 'A':'C']
df.loc[:, ['A','B','C']]
df.loc[:, [True,True,True,False]] # 前三列(布尔数组长度等于行数)
df.loc[:, df.loc['a']>0]
# a行大于0的列
df.loc[:, df.iloc[0]>0]
# 0行大于0的列
df.loc[:, lambda _df: ['A', 'B']]

 

df.A.loc[lambda s: s > 0]


3. df.iloc[]

二维,先行后列
行维度:
    整数索引、整数切片、整数列表、<布尔数组>
列维度:
    整数索引、整数切片、整数列表、<布尔数组>、Callable

df.iloc[3, :]
df.iloc[:3, :]
df.iloc[[0,2,4], :]
df.iloc[[True,True,True,False,False,False], :] # 前三行(布尔数组长度等于行数)
df.iloc[df['A']>0, :]
#× 为什么不行呢?想不通!
df.iloc[df.loc[:,'A']>0, :] #×
df.iloc[df.iloc[:,0]>0, :]
#×
df.iloc[lambda _df: [0, 1], :]

 

df.iloc[:, 1]
df.iloc[:, 0:3]
df.iloc[:, [0,1,2]]
df.iloc[:, [True,True,True,False]] # 前三列(布尔数组长度等于行数)
df.iloc[:, df.loc['a']>0] #×
df.iloc[:, df.iloc[0]>0]
#×
df.iloc[:, lambda _df: [0, 1]]


4. df.ix[]

二维,先行后列
行维度:
    整数索引、整数切片、整数列表、
    标签索引、标签切片、标签列表、
    <布尔数组>、
    Callable
列维度:
    整数索引、整数切片、整数列表、
    标签索引、标签切片、标签列表、
    <布尔数组>、
    Callable

df.ix[0, :]
df.ix[0:3, :]
df.ix[[0,1,2], :]
df.ix['a', :]
df.ix['a':'d', :]
df.ix[['a','b','c'], :]

 

df.ix[:, 0]
df.ix[:, 0:3]
df.ix[:, [0,1,2]]
df.ix[:, 'A']
df.ix[:, 'A':'C']
df.ix[:, ['A','B','C']]

 


5. df.at[]

精确定位单元格
行维度:
    标签索引
列维度:
    标签索引

df.at['a', 'A']


6. df.iat[]

精确定位单元格

行维度:
    整数索引
列维度:
    整数索引

df.iat[0, 0]

 



最后

以上就是淡然红酒为你收集整理的pandas 数据索引与选取的全部内容,希望文章能够帮你解决pandas 数据索引与选取所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(48)

评论列表共有 0 条评论

立即
投稿
返回
顶部