2018年7月13日考试
1.Python读写csv文件
现有如下图1所示的data.csv文件数据,请使用python读取该csv文件数据,并添加一条记录后输出如图2所示的output.csv文件(10分)

这一题需要用到的csv文件 data.csv下载链接: https://pan.baidu.com/s/1JCUCU4vXBQNwOx2xhAjDqA 密码: pbpx
第1题
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24import csv def printCsv(csvName): with open(csvName) as csvFile: reader = csv.reader(csvFile) for i in reader: print(i) if __name__ == "__main__": inCsv = "data.csv" outCsv = "output.csv" with open(inCsv) as csvFile: reader = csv.reader(csvFile) data = list(reader) print("原csv文件data.csv的数据内容:") printCsv(inCsv) data.append(['Jack','104']) with open(outCsv,'w', newline='') as csvFile: writer = csv.writer(csvFile) writer.writerows(data) print("新产生的csv文件output.csv的数据内容:") printCsv(outCsv)
上面一段代码的运行结果如下:
原csv文件data.csv的数据内容:
['name', ' stuNo']
['ZhangSan', ' 101']
['LiSi', ' 102']
['WangWu', ' 103']
新产生的csv文件output.csv的数据内容:
['name', ' stuNo']
['ZhangSan', ' 101']
['LiSi', ' 102']
['WangWu', ' 103']
['Jack', '104']
2.Python读写excel文件
如下所示的Excel表格数据,请编写python代码筛选出Points大于5的数据,并按Points进行排序后输出如图2所示的Excel文件结果

这一题需要用到的excel文件 rank.xlsx下载链接: https://pan.baidu.com/s/1reS7yjxUjU1iqZc0rCjljA 密码: uymy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24import xlrd import xlwt if __name__ == "__main__": excel = xlrd.open_workbook("rank.xlsx") sheet = excel.sheet_by_index(0) #获取字段列表赋值给field_list,第2个字段大于5的数据列表赋值给data_list field_list = sheet.row_values(0) data_list = [] for i in range(1,sheet.nrows): if int(sheet.row_values(i)[2]) > 5: data_list.append(sheet.row_values(i)) #利用sorted内置函数排序 data_list = sorted(data_list,key=lambda x:x[2],reverse=True) #将获得的信息存入新表,命名为output.xlsx excel_w = xlwt.Workbook() sheet_w = excel_w.add_sheet("sheet1") for i in range(len(field_list)): sheet_w.write(0,i,field_list[i]) for i in range(len(data_list)): for j in range(len(data_list[i])): sheet_w.write(i+1,j,data_list[i][j]) excel_w.save("output.xls")
3.mysql数据库的sql语句
(1) 使用sql创建出如下图所示的数据表,数据库名为movies,表名为movieRank,表中包含MovieName、boxOffice、percent、days、totalBoxOffice五个字段,字段的信息如下图所示:


(2)使用sql语句向movieRank表中添加若干条数据(材料中已提供movieData.txt)
insert into movierank values("21克拉", 1031.92, 15.18, 2, 2827.06);
insert into movierank values("狂暴巨兽", 2928.28, 43.07, 9, 57089.20);
insert into movierank values("起跑线", 161.03, 2.37, 18, 19873.43);
insert into movierank values("头号玩家", 1054.87, 15.52, 23, 127306.41);
insert into movierank values("红海行动", 45.49, 0.67, 65, 364107.74);
插入数据的结果如下图所示:

(3)使用sql语句查询movieRank表中的数据并按照totalBoxOffice字段进行排序
select * from movierank order by totalboxoffice;
(4)使用sql语句计算出字段totalBoxOffice字段的总和
select sum(totalboxoffice) from movierank;
4.Python操作mysql数据库
此题接第3题题干,在第三题的基础上完成以下需求:
(1)编写python代码连接mysql数据库,并向movieRank表中新添加两条数据(已提供second.txt)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22import pymysql def getConn(database ="pydb"): args = dict( host = 'localhost', user = 'root', passwd = 'Leimysql8', charset = 'utf8', db = database ) return pymysql.connect(**args) if __name__ == "__main__": conn = getConn("movies") cursor = conn.cursor() insert_sql = 'insert into movierank values' '("犬之岛", 617.35, 9.08, 2, 1309.09),' '("湮灭", 135.34, 1.99, 9 , 5556.77)' cursor.execute(insert_sql) conn.commit() conn.close()
(2)编写python代码,查询出所有的电影数据,并输出到一个Excel表movieRank.xlsx中,如下图所示

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31import pymysql import xlwt def getConn(database ="pydb"): args = dict( host = 'localhost', user = 'root', passwd = 'Leimysql8', charset = 'utf8', db = database ) return pymysql.connect(**args) if __name__ == "__main__": #从mysql数据库中取出数据赋值给data_list,其数据类型为元组 conn = getConn("movies") cursor = conn.cursor() select_sql = "select * from movierank " cursor.execute(select_sql) data_list = cursor.fetchall() field_list = [k[0] for k in cursor.description] #把data_list中的数据存入新的excel中,并命名为movieRank.xls excel = xlwt.Workbook() sheet = excel.add_sheet("sheet1") for i in range(len(field_list)): sheet.write(0,i,field_list[i]) for i in range(len(data_list)): for j in range(len(data_list[i])): sheet.write(i+1,j,data_list[i][j]) excel.save("movieRank.xls")
5.Python操作MongoDB数据库
(1)编写python代码连接MongoDB数据库,并新建一个building库,在building库下新建一个rooms表
1
2
3
4
5
6
7from pymongo import MongoClient if __name__ == "__main__": conn = MongoClient("localhost") db = conn.building rooms = db.create_collection("rooms")
(2)编写python代码读取rooms.csv文件的中的数据,并将数据插入到rooms表中,添加到rooms表中的数据结构如下图所示

这一题需要用到的csv文件rooms.csv下载链接: https://pan.baidu.com/s/10fyct-J3a0txtS-EZaaxAQ 密码: je33
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17from pymongo import MongoClient import csv if __name__ == "__main__": with open("rooms.csv") as csvFile: reader = list(csv.reader(csvFile)) field_list = reader[0] data_list = reader[1:] conn = MongoClient("localhost") db = conn.building rooms = db.rooms insert_list = [] for data in data_list: insert_list.append( {key:value for key,value in zip(field_list,data)}) rooms.insert_many(insert_list)
使用csv.DictReader方法
1
2
3
4
5
6
7
8
9
10
11
12from pymongo import MongoClient import csv if __name__ == "__main__": conn = MongoClient("localhost") db = conn.building rooms = db.rooms with open("rooms.csv") as csvFile: reader = csv.DictReader(csvFile) for row in reader: rooms.insert_one(dict(row))
最后
以上就是糊涂身影最近收集整理的关于Python数据持久化-小测验的全部内容,更多相关Python数据持久化-小测验内容请搜索靠谱客的其他文章。
发表评论 取消回复