我是靠谱客的博主 执着铃铛,最近开发中收集的这篇文章主要介绍论文笔记——Semantic Scene Completion from a Signal Depth Image,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

没有太多时间好好翻译了,大概把要点梳理了一下啦~


Task:

  1. produce a complete 3D voxel representation of volumetric occupancy
  2. semantic labels for a scene from a signal-view depth map observation

以前的类似工作呢一直是将1、2任务分开完成的,但作者设计了一个end-to-end 3D Conv net:SSCNet用于完善语义场景,发现效果更好。
input:a single depth image
output:occupancy and semantic labels

如何解决Semantic Scene Completion的思路:

  1. A dilation-based 3D context module
  2. Joint model

Problems and Solution:

  1. How do we effective capture contextual information from 3D volumetric data,where the signal is sparse and lacks high frequency detail?
    *Solution:*A dilation-based 3D context module用于扩大感受野,能够有效捕捉来自三维体积数据的信息,其中信号是稀疏且缺乏高频细节

  2. RGB-D datasets only provide annotationos on visible surfaces,how do we obtain training data with complete volumetric annatations at scene level?
    *Solution:*SUNCG datasts(we can compute 3D secen volumes with dense object labels through voxelization)
    (RGB-D仅仅提供了浅层表面的注释)

Attribute:

  1. 提出SSCNet,该网络的输入是单幅的深度图像,输出包括了体素和语义标签。
  2. 提出了一个新的数据集SUNCG,该数据集是dense注释的合成三维场景数据集。

相关的算法都是建立在相机模型的基础之上,分单目(即单视角)和双目(即多视角,multi-view),而本论文是single-view。

最后

以上就是执着铃铛为你收集整理的论文笔记——Semantic Scene Completion from a Signal Depth Image的全部内容,希望文章能够帮你解决论文笔记——Semantic Scene Completion from a Signal Depth Image所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(37)

评论列表共有 0 条评论

立即
投稿
返回
顶部