我是靠谱客的博主 长情星星,最近开发中收集的这篇文章主要介绍解读Depth Map Prediction from a Single Image using a Multi-Scale Deep Network (2),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

解读Depth Map Prediction from a Single Image using a Multi-Scale Deep Network (2)


把CNN的基本知识补全后,接着向下看 Section 3 Approach

卷积网络分为两个部分:

a. A coarse-scale network predicts the depth of the scene at a global level

b.It is then refined within local regions by a fine-scale network

如下图所示,


先来看 Global Coarse-Scale Network

主要作用:predict the overall depth map structure using a global view of the scene

卷积层叙述:

 upper layers(fully connected):      contain the entire image in their field of view

 lower and middle layers :                 contain information from different parts of the image

 卷积层设计的特点:

 a. be able to integrate a global understanding of the full scene to predict the depth

 b. make effective use of cues such as vanishing point, object location


再来看 Local Fine-Scale Network

主要作用:to edit the coarse prediction it receives to align with local details such as objects and wall edges

卷积层特点:

 a. consists of convolutional layers only, along with one pooling stage for the first layer edge features

 b. Subsequent layers maintain this size using zero-padded convolutions

 c. All hidden units use rectified linear activations


CNN网络训练过程简述:

 a. first train the coarse network against the ground-truth targets

 b. then train the fine-scale network keeping the coarse-scale output fixed

      (when training the fine network, we do not backpropagate through the coarse one)


CNN卷积神经网络的训练类似于传统BP神经网络的训练,即

1,需要定义网络学习参数以及误差函数

2,推导出参数权值更替的表达式


这一方面的知识需要补充!

下一次主要学习CNN卷积神经网络的反向传播过程!





最后

以上就是长情星星为你收集整理的解读Depth Map Prediction from a Single Image using a Multi-Scale Deep Network (2)的全部内容,希望文章能够帮你解决解读Depth Map Prediction from a Single Image using a Multi-Scale Deep Network (2)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(65)

评论列表共有 0 条评论

立即
投稿
返回
顶部