概述
解读Depth Map Prediction from a Single Image using a Multi-Scale Deep Network (2)
把CNN的基本知识补全后,接着向下看 Section 3 Approach
卷积网络分为两个部分:
a. A coarse-scale network predicts the depth of the scene at a global level
b.It is then refined within local regions by a fine-scale network
如下图所示,
先来看 Global Coarse-Scale Network
主要作用:predict the overall depth map structure using a global view of the scene
卷积层叙述:
upper layers(fully connected): contain the entire image in their field of view
lower and middle layers : contain information from different parts of the image
卷积层设计的特点:
a. be able to integrate a global understanding of the full scene to predict the depth
b. make effective use of cues such as vanishing point, object location
再来看 Local Fine-Scale Network
主要作用:to edit the coarse prediction it receives to align with local details such as objects and wall edges
卷积层特点:
a. consists of convolutional layers only, along with one pooling stage for the first layer edge features
b. Subsequent layers maintain this size using zero-padded convolutions
c. All hidden units use rectified linear activations
CNN网络训练过程简述:
a. first train the coarse network against the ground-truth targets
b. then train the fine-scale network keeping the coarse-scale output fixed
(when training the fine network, we do not backpropagate through the coarse one)
CNN卷积神经网络的训练类似于传统BP神经网络的训练,即
1,需要定义网络学习参数以及误差函数
2,推导出参数权值更替的表达式
这一方面的知识需要补充!
下一次主要学习CNN卷积神经网络的反向传播过程!
最后
以上就是长情星星为你收集整理的解读Depth Map Prediction from a Single Image using a Multi-Scale Deep Network (2)的全部内容,希望文章能够帮你解决解读Depth Map Prediction from a Single Image using a Multi-Scale Deep Network (2)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复