我是靠谱客的博主 冷傲悟空,最近开发中收集的这篇文章主要介绍Java集合篇:Hashtable原理详解(JDK1.8),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

(本文使用的源码基于JDK1.8的)

 

一、Hashtable的基本方法:

这部分参考博客:https://blog.csdn.net/chenssy/article/details/22896871

1、定义:

HashTable在Java中的定义如下:

public class Hashtable<K,V>
    extends Dictionary<K,V>
    implements Map<K,V>, Cloneable, java.io.Serializable

从中可以看出HashTable继承Dictionary类,实现Map接口。其中Dictionary类是任何可将键映射到相应值的类(如 Hashtable)的抽象父类。每个键和每个值都是一个对象。在任何一个 Dictionary 对象中,每个键至多与一个值相关联。Map是"key-value键值对"接口。

HashTable采用"拉链法"实现哈希表,它定义了几个重要的参数:table、count、threshold、loadFactor、modCount。

table:为一个Entry[]数组类型,Entry代表了“拉链”的节点,每一个Entry代表了一个键值对,哈希表的"key-value键值对"都是存储在Entry数组中的。

 count:HashTable的大小,注意这个大小并不是HashTable的容器大小,而是他所包含Entry键值对的数量。

 threshold:Hashtable的阈值,用于判断是否需要调整Hashtable的容量。threshold的值="容量*加载因子"。

loadFactor:加载因子。

modCount:用来实现“fail-fast”机制的(也就是快速失败)。所谓快速失败就是在并发集合中,其进行迭代操作时,若有其他线程对其进行结构性的修改,这时迭代器会立马感知到,并且立即抛出ConcurrentModificationException异常,而不是等到迭代完成之后才告诉你已经出错了。

2、构造方法:

在HashTabel中存在4个构造函数。通过这4个构造函数我们构建出一个我想要的HashTable。

public Hashtable() {
        this(11, 0.75f);
    }

 默认构造函数,容量为11,加载因子为0.75。

public Hashtable(int initialCapacity) {
        this(initialCapacity, 0.75f);
    }

用指定初始容量和默认的加载因子 (0.75) 构造一个新的空哈希表。

public Hashtable(int initialCapacity, float loadFactor) {
        //验证初始容量
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        //验证加载因子
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal Load: "+loadFactor);
 
        if (initialCapacity==0)
            initialCapacity = 1;
        
        this.loadFactor = loadFactor;
        
        //初始化table,获得大小为initialCapacity的table数组
        table = new Entry[initialCapacity];
        //计算阀值
        threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
    }

用指定初始容量和指定加载因子构造一个新的空哈希表。

public Hashtable(Map<? extends K, ? extends V> t) {
        //设置table容器大小,其值==t.size * 2 + 1
        this(Math.max(2*t.size(), 11), 0.75f);
        putAll(t);
    }

构造一个与给定的 Map 具有相同映射关系的新哈希表。

3、主要方法:

 HashTable的API对外提供了许多方法,这些方法能够很好帮助我们操作HashTable,但是这里我只介绍两个最根本的方法:put、get。

(1)首先我们先看put方法:将指定 key 映射到此哈希表中的指定 value。注意这里键key和值value都不可为空。

public synchronized V put(K key, V value) {
        // 确保value不为null
        if (value == null) {
            throw new NullPointerException();
        }
 
        /*
         * 确保key在table[]是不重复的
         * 处理过程:
         * 1、计算key的hash值,确认在table[]中的索引位置
         * 2、迭代index索引位置,如果该位置处的链表中存在一个一样的key,则替换其value,返回旧值
         */
        Entry tab[] = table;
        int hash = hash(key);    //计算key的hash值
        int index = (hash & 0x7FFFFFFF) % tab.length;     //确认该key的索引位置
        //迭代,寻找该key,替换
        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                V old = e.value;
                e.value = value;
                return old;
            }
        }
 
        modCount++;
        if (count >= threshold) {  //如果容器中的元素数量已经达到阀值,则进行扩容操作
            rehash();
            tab = table;
            hash = hash(key);
            index = (hash & 0x7FFFFFFF) % tab.length;
        }
 
        // 在索引位置处插入一个新的节点
        Entry<K,V> e = tab[index];
        tab[index] = new Entry<>(hash, key, value, e);
        //容器中元素+1
        count++;
        return null;
    }

put方法的整个处理流程是:计算key的hash值,根据hash值获得key在table数组中的索引位置,然后迭代该key处的Entry链表(我们暂且理解为链表),若该链表中存在一个这个的key对象,那么就直接替换其value值即可,否则在将改key-value节点插入该index索引位置处。

Hashtable的扩容操作,在put方法中,如果需要向table[]中添加Entry元素,会首先进行容量校验,如果容量已经达到了阀值,HashTable就会进行扩容处理rehash(),如下:

protected void rehash() {
        int oldCapacity = table.length;
        //元素
        Entry<K,V>[] oldMap = table;
 
        //新容量=旧容量 * 2 + 1
        int newCapacity = (oldCapacity << 1) + 1;
        if (newCapacity - MAX_ARRAY_SIZE > 0) {
            if (oldCapacity == MAX_ARRAY_SIZE)
                return;
            newCapacity = MAX_ARRAY_SIZE;
        }
        
        //新建一个size = newCapacity 的HashTable
        Entry<K,V>[] newMap = new Entry[newCapacity];
 
        modCount++;
        //重新计算阀值
        threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
 
        table = newMap;
        //将原来的元素拷贝到新的HashTable中
        for (int i = oldCapacity ; i-- > 0 ;) {
            for (Entry<K,V> old = oldMap[i] ; old != null ; ) {
                Entry<K,V> e = old;
                old = old.next;
 
                int index = (e.hash & 0x7FFFFFFF) % newCapacity;
                e.next = newMap[index];
                newMap[index] = e;
            }
        }
    }

在这个rehash()方法中我们可以看到容量扩大两倍+1,同时需要将原来HashTable中的元素一一复制到新的HashTable中,这个过程是比较消耗时间的,同时还需要重新计算 index 的,毕竟容量已经变了。这里对阀值啰嗦一下:比如初始值11、加载因子默认0.75,那么这个时候阀值threshold=8,当容器中的元素达到8时,HashTable进行一次扩容操作,容量 = 8 * 2 + 1 =17,而阀值threshold=17*0.75 = 13,当容器元素再一次达到阀值时,HashTable还会进行扩容操作,依次类推。

(2)get方法就会比较简单,处理过程就是计算key的hash值,判断在table数组中的索引位置,然后迭代链表,匹配直到找到相对应key的value,若没有找到返回null。

public synchronized V get(Object key) {
        Entry tab[] = table;
        int hash = hash(key);
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                return e.value;
            }
        }
        return null;
    }

 

二、Hashtable的三种遍历方式:

import java.util.Enumeration;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
 
public class HashTableTest {
	public static void main(String args[]){
		Hashtable<String, Integer> table = new Hashtable<String, Integer>();
		
		table.put("zhangsan", 22);
		table.put("lisi", 33);
		table.put("wangwu", 44);	
		
		//[1]Iterator遍历方式1--键值对遍历entrySet()
		Iterator<Entry<String, Integer>> iter = table.entrySet().iterator();
		while(iter.hasNext()){
			Map.Entry<String, Integer> entry = (Map.Entry<String, Integer>)iter.next();
			String key = entry.getKey();
			int value = entry.getValue();
			System.out.println("entrySet:"+key+" "+value);
		}
		
		System.out.println("====================================");
		
		//[2]Iterator遍历方式2--key键的遍历
		Iterator<String> iterator = table.keySet().iterator();
		while(iterator.hasNext()){
			String key = (String)iterator.next();
			int value = table.get(key);
			System.out.println("keySet:"+key+" "+value);
		}
		
		System.out.println("====================================");
		
		//[3]通过Enumeration来遍历Hashtable
		Enumeration<String> enu = table.keys();
		while(enu.hasMoreElements()) {
		    System.out.println("Enumeration:"+table.keys()+" "+enu.nextElement());
		} 	
	}
}
输出结果:
entrySet:zhangsan 22
entrySet:lisi 33
entrySet:wangwu 44
====================================
keySet:zhangsan 22
keySet:lisi 33
keySet:wangwu 44
====================================
Enumeration:java.util.Hashtable$Enumerator@139a55 zhangsan
Enumeration:java.util.Hashtable$Enumerator@1db9742 lisi
Enumeration:java.util.Hashtable$Enumerator@106d69c wangwu

 

三、Hashtable与HashMap的区别详解:

参考博客:https://blog.csdn.net/wangxing233/article/details/79452946?utm_source=blogxgwz5

1、继承的父类不同:

Hashtable继承的是Dictionary类,HashMap继承的是AbstractMap,但两者都实现了Map接口。

2、是否允许null:

HashMap可以允许存在一个 null 的 key 和任意个 null 的 value,不过建议尽量避免这样使用null作为 key,HashMap以null作为key时,总是存储在table数组的第一个节点上;Hashtable中的 key 和 value 都不允许为 null 。

在HashMap中,当get()方法返回null值时,可能是 HashMap中没有该键,也可能使该键所对应的值为null。因此,在HashMap中不能由get()方法来判断HashMap中是否存在某个键, 而应该用containsKey()方法来判断。

(1)当HashMap遇到为null的key时,它会调用putForNullKey方法来进行处理。对于value没有进行任何处理,只要是对象都可以。

if (key == null)
            return putForNullKey(value);

(2)如果在Hashtable中有类似put(null,null)的操作,编译时可以通过,因为key和value都是Object类型,但运行时会抛出NullPointerException异常。

if (value == null) {
            throw new NullPointerException();
        }

3、Hashtable的方法是线程安全的,底层的每个方法都使用synchronized的),而HashMap的方法多线程不安全。

虽然HashMap不是线程安全的,但是它的效率会比Hashtable要好很多。当需要多线程操作的时候可以使用线程安全的ConcurrentHashMap。ConcurrentHashMap虽然也是线程安全的,但是它的效率比Hashtable要高好多倍。因为ConcurrentHashMap使用了分段锁,并不对整个数据进行锁定。

4、遍历不同:HashMap仅支持Iterator的遍历方式,Hashtable支持Iterator和Enumeration两种遍历方式。

(1)HashMap 的Iterator 使用的是fail-fast 迭代器,当有其他线程改变了 HashMap 的结构(增加、删除、修改元素),将会抛出ConcurrentModificationException。

(2)JDK8之前的版本中,Hashtable是没有fast-fail机制的。在JDK8及以后的版本中 ,HashTable也是使用fast-fail的, 源码如下: 

 if (expectedModCount != modCount) {
     throw new ConcurrentModificationException();
  }

modCount 的使用类似于并发编程中的 CAS( Compare and Swap) 技术,每次在发生增删改操作的时候,都会出现modCount++的动作,而modcount可以理解为是当前hashtable的状态。每发生一次操作,状态+1。设置这个状态,主要是用于hashtable 等容器类在迭代时,判断数据是否过时时使用的。尽管hashtable采用了原生的同步锁来保护数据安全。但是在出现迭代数据的时候,则无法保证边迭代,边正确操作。于是使用这个值来标记状态。一旦在迭代的过程中状态发生了改变,则会快速抛出一个异常,终止迭代行为。

5、是否提供contains方法:

(1)HashMap把Hashtable的contains()方法去掉了,改成containsValue 和 containsKey ,因为contains() 方法容易让人引起误解;

(2)Hashtable则保留了contains,containsValue 和 containsKey 三个方法 ,其中 contains 和 containsValue 功能相同。

6、内部实现使用的数值初始化 和 扩容方式不同:

(1)两者的默认负载因子都是0.75,但Hashtable扩容时,容量变为原来的2倍+1,HashMap扩容时,将容量变成原来的2倍;Hashtable在不制定容量的情况下默认容量是11,也就是说Hashtable会尽量使用素数、奇数,而HashMap 的默认容量 为16,Hashtable不要求底层数组的容量为2的整数次幂,而 HashMap 要求一定为2的整数次幂。

(2) 之所以会有这样的不同,是因为Hashtable和HashMap设计时的侧重点不同。Hashtable的侧重点是哈希的结果更加均匀,使得哈希冲突减少。当哈希表的大小为素数时,简单的取模哈希的结果会更加均匀。而HashMap则更加关注hash的计算效率问题。在取模计算时,如果模数是2的幂,那么我们可以直接使用位运算来得到结果,效率要大大高于做除法。HashMap为了加快hash的速度,将哈希表的大小固定为了2的幂。当然这引入了哈希分布不均匀的问题,所以HashMap为解决这问题,又对hash算法做了一些改动。这从而导致了Hashtable和HashMap的计算hash值的方法不同。

7、hash 值不同:

(1)Hashtable直接使用Object的hashCode(),hashCode是JDK根据对象的地址或者字符串或者数字算出来的int类型的数值,然后再使用去取模运算来获得最终的位置。 这里一般先用 hash & 0x7FFFFFFF 后,再对length取模,&0x7FFFFFFF的目的是为了将负的hash值转化为正值,因为hash值有可能为负数,而 hash & 0x7FFFFFFF 后,只有符号外改变,而后面的位都不变。Hashtable在计算元素的位置时需要进行一次除法运算,而除法运算是比较耗时的。 

 int hash = key.hashCode();
 int index = (hash & 0x7FFFFFFF) % tab.length;

(2)为了提高计算效率,HashMap 将哈希表的大小固定为了2的幂,这样在取模预算时,不需要做除法,只需要做位运算。位运算比除法的效率要高很多。HashMap的效率虽然提高了,但是hash冲突却也增加了。因为它得出的hash值的低位相同的概率比较高,HashMap的效率虽然提高了,但是hash冲突却也增加了。因为它得出的hash值的低位相同的概率比较高。而计算位运算为了解决这个问题,HashMap重新根据hashcode计算hash值后,又对hash值做了一些运算来打散数据。使得取得的位置更加分散,从而减少了hash冲突。当然了,为了高效,HashMap只做了一些简单的位处理。从而不至于把使用2 的幂次方带来的效率提升给抵消掉。

  static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

 

四、Hashtable 部分源码注释:

这部分摘自博客:https://blog.csdn.net/ns_code/article/details/36191279

package java.util;  
import java.io.*;  
 
public class Hashtable<K,V>  
    extends Dictionary<K,V>  
    implements Map<K,V>, Cloneable, java.io.Serializable {  
 
    // 保存key-value的数组。  
    // Hashtable同样采用单链表解决冲突,每一个Entry本质上是一个单向链表  
    private transient Entry[] table;  
 
    // Hashtable中键值对的数量  
    private transient int count;  
 
    // 阈值,用于判断是否需要调整Hashtable的容量(threshold = 容量*加载因子)  
    private int threshold;  
 
    // 加载因子  
    private float loadFactor;  
 
    // Hashtable被改变的次数,用于fail-fast机制的实现  
    private transient int modCount = 0;  
 
    // 序列版本号  
    private static final long serialVersionUID = 1421746759512286392L;  
 
    // 指定“容量大小”和“加载因子”的构造函数  
    public Hashtable(int initialCapacity, float loadFactor) {  
        if (initialCapacity < 0)  
            throw new IllegalArgumentException("Illegal Capacity: "+  
                                               initialCapacity);  
        if (loadFactor <= 0 || Float.isNaN(loadFactor))  
            throw new IllegalArgumentException("Illegal Load: "+loadFactor);  
 
        if (initialCapacity==0)  
            initialCapacity = 1;  
        this.loadFactor = loadFactor;  
        table = new Entry[initialCapacity];  
        threshold = (int)(initialCapacity * loadFactor);  
    }  
 
    // 指定“容量大小”的构造函数  
    public Hashtable(int initialCapacity) {  
        this(initialCapacity, 0.75f);  
    }  
 
    // 默认构造函数。  
    public Hashtable() {  
        // 默认构造函数,指定的容量大小是11;加载因子是0.75  
        this(11, 0.75f);  
    }  
 
    // 包含“子Map”的构造函数  
    public Hashtable(Map<? extends K, ? extends V> t) {  
        this(Math.max(2*t.size(), 11), 0.75f);  
        // 将“子Map”的全部元素都添加到Hashtable中  
        putAll(t);  
    }  
 
    public synchronized int size() {  
        return count;  
    }  
 
    public synchronized boolean isEmpty() {  
        return count == 0;  
    }  
 
    // 返回“所有key”的枚举对象  
    public synchronized Enumeration<K> keys() {  
        return this.<K>getEnumeration(KEYS);  
    }  
 
    // 返回“所有value”的枚举对象  
    public synchronized Enumeration<V> elements() {  
        return this.<V>getEnumeration(VALUES);  
    }  
 
    // 判断Hashtable是否包含“值(value)”  
    public synchronized boolean contains(Object value) {  
        //注意,Hashtable中的value不能是null,  
        // 若是null的话,抛出异常!  
        if (value == null) {  
            throw new NullPointerException();  
        }  
 
        // 从后向前遍历table数组中的元素(Entry)  
        // 对于每个Entry(单向链表),逐个遍历,判断节点的值是否等于value  
        Entry tab[] = table;  
        for (int i = tab.length ; i-- > 0 ;) {  
            for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {  
                if (e.value.equals(value)) {  
                    return true;  
                }  
            }  
        }  
        return false;  
    }  
 
    public boolean containsValue(Object value) {  
        return contains(value);  
    }  
 
    // 判断Hashtable是否包含key  
    public synchronized boolean containsKey(Object key) {  
        Entry tab[] = table;  
		//计算hash值,直接用key的hashCode代替
        int hash = key.hashCode();    
        // 计算在数组中的索引值 
        int index = (hash & 0x7FFFFFFF) % tab.length;  
        // 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素  
        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {  
            if ((e.hash == hash) && e.key.equals(key)) {  
                return true;  
            }  
        }  
        return false;  
    }  
 
    // 返回key对应的value,没有的话返回null  
    public synchronized V get(Object key) {  
        Entry tab[] = table;  
        int hash = key.hashCode();  
        // 计算索引值,  
        int index = (hash & 0x7FFFFFFF) % tab.length;  
        // 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素  
        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {  
            if ((e.hash == hash) && e.key.equals(key)) {  
                return e.value;  
            }  
        }  
        return null;  
    }  
 
    // 调整Hashtable的长度,将长度变成原来的2倍+1 
    protected void rehash() {  
        int oldCapacity = table.length;  
        Entry[] oldMap = table;  
 
		//创建新容量大小的Entry数组
        int newCapacity = oldCapacity * 2 + 1;  
        Entry[] newMap = new Entry[newCapacity];  
 
        modCount++;  
        threshold = (int)(newCapacity * loadFactor);  
        table = newMap;  
		
		//将“旧的Hashtable”中的元素复制到“新的Hashtable”中
		for (int i = oldCapacity ; i-- > 0 ;) {  
            for (Entry<K,V> old = oldMap[i] ; old != null ; ) {  
                Entry<K,V> e = old;  
                old = old.next;  
				//重新计算index
                int index = (e.hash & 0x7FFFFFFF) % newCapacity;  
                e.next = newMap[index];  
                newMap[index] = e;  
            }  
        }  
    }  
 
    // 将“key-value”添加到Hashtable中  
    public synchronized V put(K key, V value) {  
        // Hashtable中不能插入value为null的元素!!!  
        if (value == null) {  
            throw new NullPointerException();  
        }  
 
        // 若“Hashtable中已存在键为key的键值对”,  
        // 则用“新的value”替换“旧的value”  
        Entry tab[] = table;  
        int hash = key.hashCode();  
        int index = (hash & 0x7FFFFFFF) % tab.length;  
        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {  
            if ((e.hash == hash) && e.key.equals(key)) {  
                V old = e.value;  
                e.value = value;  
                return old;  
                }  
        }  
 
        // 若“Hashtable中不存在键为key的键值对”,
        // 将“修改统计数”+1  
        modCount++;  
        //  若“Hashtable实际容量” > “阈值”(阈值=总的容量 * 加载因子)  
        //  则调整Hashtable的大小  
        if (count >= threshold) {
            rehash();  
 
            tab = table;  
            index = (hash & 0x7FFFFFFF) % tab.length;  
        }  
 
        //将新的key-value对插入到tab[index]处(即链表的头结点)
        Entry<K,V> e = tab[index];         
        tab[index] = new Entry<K,V>(hash, key, value, e);  
        count++;  
        return null;  
    }  
 
    // 删除Hashtable中键为key的元素  
    public synchronized V remove(Object key) {  
        Entry tab[] = table;  
        int hash = key.hashCode();  
        int index = (hash & 0x7FFFFFFF) % tab.length;  
		
        //从table[index]链表中找出要删除的节点,并删除该节点。
		//因为是单链表,因此要保留带删节点的前一个节点,才能有效地删除节点
        for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {  
            if ((e.hash == hash) && e.key.equals(key)) {  
                modCount++;  
                if (prev != null) {  
                    prev.next = e.next;  
                } else {  
                    tab[index] = e.next;  
                }  
                count--;  
                V oldValue = e.value;  
                e.value = null;  
                return oldValue;  
            }  
        }  
        return null;  
    }  
 
    // 将“Map(t)”的中全部元素逐一添加到Hashtable中  
    public synchronized void putAll(Map<? extends K, ? extends V> t) {  
        for (Map.Entry<? extends K, ? extends V> e : t.entrySet())  
            put(e.getKey(), e.getValue());  
    }  
 
    // 清空Hashtable  
    // 将Hashtable的table数组的值全部设为null  
    public synchronized void clear() {  
        Entry tab[] = table;  
        modCount++;  
        for (int index = tab.length; --index >= 0; )  
            tab[index] = null;  
        count = 0;  
    }  
 
    // 克隆一个Hashtable,并以Object的形式返回。  
    public synchronized Object clone() {  
        try {  
            Hashtable<K,V> t = (Hashtable<K,V>) super.clone();  
            t.table = new Entry[table.length];  
            for (int i = table.length ; i-- > 0 ; ) {  
                t.table[i] = (table[i] != null)  
                ? (Entry<K,V>) table[i].clone() : null;  
            }  
            t.keySet = null;  
            t.entrySet = null;  
            t.values = null;  
            t.modCount = 0;  
            return t;  
        } catch (CloneNotSupportedException e) {   
            throw new InternalError();  
        }  
    }  
 
    public synchronized String toString() {  
        int max = size() - 1;  
        if (max == -1)  
            return "{}";  
 
        StringBuilder sb = new StringBuilder();  
        Iterator<Map.Entry<K,V>> it = entrySet().iterator();  
 
        sb.append('{');  
        for (int i = 0; ; i++) {  
            Map.Entry<K,V> e = it.next();  
            K key = e.getKey();  
            V value = e.getValue();  
            sb.append(key   == this ? "(this Map)" : key.toString());  
            sb.append('=');  
            sb.append(value == this ? "(this Map)" : value.toString());  
 
            if (i == max)  
                return sb.append('}').toString();  
            sb.append(", ");  
        }  
    }  
 
    // 获取Hashtable的枚举类对象  
    // 若Hashtable的实际大小为0,则返回“空枚举类”对象;  
    // 否则,返回正常的Enumerator的对象。 
    private <T> Enumeration<T> getEnumeration(int type) {  
    if (count == 0) {  
        return (Enumeration<T>)emptyEnumerator;  
    } else {  
        return new Enumerator<T>(type, false);  
    }  
    }  
 
    // 获取Hashtable的迭代器  
    // 若Hashtable的实际大小为0,则返回“空迭代器”对象;  
    // 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)  
    private <T> Iterator<T> getIterator(int type) {  
        if (count == 0) {  
            return (Iterator<T>) emptyIterator;  
        } else {  
            return new Enumerator<T>(type, true);  
        }  
    }  
 
    // Hashtable的“key的集合”。它是一个Set,没有重复元素  
    private transient volatile Set<K> keySet = null;  
    // Hashtable的“key-value的集合”。它是一个Set,没有重复元素  
    private transient volatile Set<Map.Entry<K,V>> entrySet = null;  
    // Hashtable的“key-value的集合”。它是一个Collection,可以有重复元素  
    private transient volatile Collection<V> values = null;  
 
    // 返回一个被synchronizedSet封装后的KeySet对象  
    // synchronizedSet封装的目的是对KeySet的所有方法都添加synchronized,实现多线程同步  
    public Set<K> keySet() {  
        if (keySet == null)  
            keySet = Collections.synchronizedSet(new KeySet(), this);  
        return keySet;  
    }  
 
    // Hashtable的Key的Set集合。  
    // KeySet继承于AbstractSet,所以,KeySet中的元素没有重复的。  
    private class KeySet extends AbstractSet<K> {  
        public Iterator<K> iterator() {  
            return getIterator(KEYS);  
        }  
        public int size() {  
            return count;  
        }  
        public boolean contains(Object o) {  
            return containsKey(o);  
        }  
        public boolean remove(Object o) {  
            return Hashtable.this.remove(o) != null;  
        }  
        public void clear() {  
            Hashtable.this.clear();  
        }  
    }  
 
    // 返回一个被synchronizedSet封装后的EntrySet对象  
    // synchronizedSet封装的目的是对EntrySet的所有方法都添加synchronized,实现多线程同步  
    public Set<Map.Entry<K,V>> entrySet() {  
        if (entrySet==null)  
            entrySet = Collections.synchronizedSet(new EntrySet(), this);  
        return entrySet;  
    }  
 
    // Hashtable的Entry的Set集合。  
    // EntrySet继承于AbstractSet,所以,EntrySet中的元素没有重复的。  
    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {  
        public Iterator<Map.Entry<K,V>> iterator() {  
            return getIterator(ENTRIES);  
        }  
 
        public boolean add(Map.Entry<K,V> o) {  
            return super.add(o);  
        }  
 
        // 查找EntrySet中是否包含Object(0)  
        // 首先,在table中找到o对应的Entry链表  
        // 然后,查找Entry链表中是否存在Object  
        public boolean contains(Object o) {  
            if (!(o instanceof Map.Entry))  
                return false;  
            Map.Entry entry = (Map.Entry)o;  
            Object key = entry.getKey();  
            Entry[] tab = table;  
            int hash = key.hashCode();  
            int index = (hash & 0x7FFFFFFF) % tab.length;  
 
            for (Entry e = tab[index]; e != null; e = e.next)  
                if (e.hash==hash && e.equals(entry))  
                    return true;  
            return false;  
        }  
 
        // 删除元素Object(0)  
        // 首先,在table中找到o对应的Entry链表
        // 然后,删除链表中的元素Object  
        public boolean remove(Object o) {  
            if (!(o instanceof Map.Entry))  
                return false;  
            Map.Entry<K,V> entry = (Map.Entry<K,V>) o;  
            K key = entry.getKey();  
            Entry[] tab = table;  
            int hash = key.hashCode();  
            int index = (hash & 0x7FFFFFFF) % tab.length;  
 
            for (Entry<K,V> e = tab[index], prev = null; e != null;  
                 prev = e, e = e.next) {  
                if (e.hash==hash && e.equals(entry)) {  
                    modCount++;  
                    if (prev != null)  
                        prev.next = e.next;  
                    else 
                        tab[index] = e.next;  
 
                    count--;  
                    e.value = null;  
                    return true;  
                }  
            }  
            return false;  
        }  
 
        public int size() {  
            return count;  
        }  
 
        public void clear() {  
            Hashtable.this.clear();  
        }  
    }  
 
    // 返回一个被synchronizedCollection封装后的ValueCollection对象  
    // synchronizedCollection封装的目的是对ValueCollection的所有方法都添加synchronized,实现多线程同步  
    public Collection<V> values() {  
    if (values==null)  
        values = Collections.synchronizedCollection(new ValueCollection(),  
                                                        this);  
        return values;  
    }  
 
    // Hashtable的value的Collection集合。  
    // ValueCollection继承于AbstractCollection,所以,ValueCollection中的元素可以重复的。  
    private class ValueCollection extends AbstractCollection<V> {  
        public Iterator<V> iterator() {  
        return getIterator(VALUES);  
        }  
        public int size() {  
            return count;  
        }  
        public boolean contains(Object o) {  
            return containsValue(o);  
        }  
        public void clear() {  
            Hashtable.this.clear();  
        }  
    }  
 
    // 重新equals()函数  
    // 若两个Hashtable的所有key-value键值对都相等,则判断它们两个相等  
    public synchronized boolean equals(Object o) {  
        if (o == this)  
            return true;  
 
        if (!(o instanceof Map))  
            return false;  
        Map<K,V> t = (Map<K,V>) o;  
        if (t.size() != size())  
            return false;  
 
        try {  
            // 通过迭代器依次取出当前Hashtable的key-value键值对  
            // 并判断该键值对,存在于Hashtable中。  
            // 若不存在,则立即返回false;否则,遍历完“当前Hashtable”并返回true。  
            Iterator<Map.Entry<K,V>> i = entrySet().iterator();  
            while (i.hasNext()) {  
                Map.Entry<K,V> e = i.next();  
                K key = e.getKey();  
                V value = e.getValue();  
                if (value == null) {  
                    if (!(t.get(key)==null && t.containsKey(key)))  
                        return false;  
                } else {  
                    if (!value.equals(t.get(key)))  
                        return false;  
                }  
            }  
        } catch (ClassCastException unused)   {  
            return false;  
        } catch (NullPointerException unused) {  
            return false;  
        }  
 
        return true;  
    }  
 
    // 计算Entry的hashCode  
    // 若 Hashtable的实际大小为0 或者 加载因子<0,则返回0。  
    // 否则,返回“Hashtable中的每个Entry的key和value的异或值 的总和”。  
    public synchronized int hashCode() {  
        int h = 0;  
        if (count == 0 || loadFactor < 0)  
            return h;  // Returns zero  
 
        loadFactor = -loadFactor;  // Mark hashCode computation in progress  
        Entry[] tab = table;  
        for (int i = 0; i < tab.length; i++)  
            for (Entry e = tab[i]; e != null; e = e.next)  
                h += e.key.hashCode() ^ e.value.hashCode();  
        loadFactor = -loadFactor;  // Mark hashCode computation complete  
 
        return h;  
    }  
 
    // java.io.Serializable的写入函数  
    // 将Hashtable的“总的容量,实际容量,所有的Entry”都写入到输出流中  
    private synchronized void writeObject(java.io.ObjectOutputStream s)  
        throws IOException  
    {  
        // Write out the length, threshold, loadfactor  
        s.defaultWriteObject();  
 
        // Write out length, count of elements and then the key/value objects  
        s.writeInt(table.length);  
        s.writeInt(count);  
        for (int index = table.length-1; index >= 0; index--) {  
            Entry entry = table[index];  
 
            while (entry != null) {  
            s.writeObject(entry.key);  
            s.writeObject(entry.value);  
            entry = entry.next;  
            }  
        }  
    }  
 
    // java.io.Serializable的读取函数:根据写入方式读出  
    // 将Hashtable的“总的容量,实际容量,所有的Entry”依次读出  
    private void readObject(java.io.ObjectInputStream s)  
         throws IOException, ClassNotFoundException  
    {  
        // Read in the length, threshold, and loadfactor  
        s.defaultReadObject();  
 
        // Read the original length of the array and number of elements  
        int origlength = s.readInt();  
        int elements = s.readInt();  
 
        // Compute new size with a bit of room 5% to grow but  
        // no larger than the original size.  Make the length  
        // odd if it's large enough, this helps distribute the entries.  
        // Guard against the length ending up zero, that's not valid.  
        int length = (int)(elements * loadFactor) + (elements / 20) + 3;  
        if (length > elements && (length & 1) == 0)  
            length--;  
        if (origlength > 0 && length > origlength)  
            length = origlength;  
 
        Entry[] table = new Entry[length];  
        count = 0;  
 
        // Read the number of elements and then all the key/value objects  
        for (; elements > 0; elements--) {  
            K key = (K)s.readObject();  
            V value = (V)s.readObject();  
                // synch could be eliminated for performance  
                reconstitutionPut(table, key, value);  
        }  
        this.table = table;  
    }  
 
    private void reconstitutionPut(Entry[] tab, K key, V value)  
        throws StreamCorruptedException  
    {  
        if (value == null) {  
            throw new java.io.StreamCorruptedException();  
        }  
        // Makes sure the key is not already in the hashtable.  
        // This should not happen in deserialized version.  
        int hash = key.hashCode();  
        int index = (hash & 0x7FFFFFFF) % tab.length;  
        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {  
            if ((e.hash == hash) && e.key.equals(key)) {  
                throw new java.io.StreamCorruptedException();  
            }  
        }  
        // Creates the new entry.  
        Entry<K,V> e = tab[index];  
        tab[index] = new Entry<K,V>(hash, key, value, e);  
        count++;  
    }  
 
    // Hashtable的Entry节点,它本质上是一个单向链表。  
    // 也因此,我们才能推断出Hashtable是由拉链法实现的散列表  
    private static class Entry<K,V> implements Map.Entry<K,V> {  
        // 哈希值  
        int hash;  
        K key;  
        V value;  
        // 指向的下一个Entry,即链表的下一个节点  
        Entry<K,V> next;  
 
        // 构造函数  
        protected Entry(int hash, K key, V value, Entry<K,V> next) {  
            this.hash = hash;  
            this.key = key;  
            this.value = value;  
            this.next = next;  
        }  
 
        protected Object clone() {  
            return new Entry<K,V>(hash, key, value,  
                  (next==null ? null : (Entry<K,V>) next.clone()));  
        }  
 
        public K getKey() {  
            return key;  
        }  
 
        public V getValue() {  
            return value;  
        }  
 
        // 设置value。若value是null,则抛出异常。  
        public V setValue(V value) {  
            if (value == null)  
                throw new NullPointerException();  
 
            V oldValue = this.value;  
            this.value = value;  
            return oldValue;  
        }  
 
        // 覆盖equals()方法,判断两个Entry是否相等。  
        // 若两个Entry的key和value都相等,则认为它们相等。  
        public boolean equals(Object o) {  
            if (!(o instanceof Map.Entry))  
                return false;  
            Map.Entry e = (Map.Entry)o;  
 
            return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&  
               (value==null ? e.getValue()==null : value.equals(e.getValue()));  
        }  
 
        public int hashCode() {  
            return hash ^ (value==null ? 0 : value.hashCode());  
        }  
 
        public String toString() {  
            return key.toString()+"="+value.toString();  
        }  
    }  
 
    private static final int KEYS = 0;  
    private static final int VALUES = 1;  
    private static final int ENTRIES = 2;  
 
    // Enumerator的作用是提供了“通过elements()遍历Hashtable的接口” 和 “通过entrySet()遍历Hashtable的接口”。  
    private class Enumerator<T> implements Enumeration<T>, Iterator<T> {  
        // 指向Hashtable的table  
        Entry[] table = Hashtable.this.table;  
        // Hashtable的总的大小  
        int index = table.length;  
        Entry<K,V> entry = null;  
        Entry<K,V> lastReturned = null;  
        int type;  
 
        // Enumerator是 “迭代器(Iterator)” 还是 “枚举类(Enumeration)”的标志  
        // iterator为true,表示它是迭代器;否则,是枚举类。  
        boolean iterator;  
 
        // 在将Enumerator当作迭代器使用时会用到,用来实现fail-fast机制。  
        protected int expectedModCount = modCount;  
 
        Enumerator(int type, boolean iterator) {  
            this.type = type;  
            this.iterator = iterator;  
        }  
 
        // 从遍历table的数组的末尾向前查找,直到找到不为null的Entry。  
        public boolean hasMoreElements() {  
            Entry<K,V> e = entry;  
            int i = index;  
            Entry[] t = table;  
            /* Use locals for faster loop iteration */ 
            while (e == null && i > 0) {  
                e = t[--i];  
            }  
            entry = e;  
            index = i;  
            return e != null;  
        }  
 
        // 获取下一个元素  
        // 注意:从hasMoreElements() 和nextElement() 可以看出“Hashtable的elements()遍历方式”  
        // 首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。  
        // 然后,依次向后遍历单向链表Entry。  
        public T nextElement() {  
            Entry<K,V> et = entry;  
            int i = index;  
            Entry[] t = table;  
            /* Use locals for faster loop iteration */ 
            while (et == null && i > 0) {  
                et = t[--i];  
            }  
            entry = et;  
            index = i;  
            if (et != null) {  
                Entry<K,V> e = lastReturned = entry;  
                entry = e.next;  
                return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);  
            }  
            throw new NoSuchElementException("Hashtable Enumerator");  
        }  
 
        // 迭代器Iterator的判断是否存在下一个元素  
        // 实际上,它是调用的hasMoreElements()  
        public boolean hasNext() {  
            return hasMoreElements();  
        }  
 
        // 迭代器获取下一个元素  
        // 实际上,它是调用的nextElement()  
        public T next() {  
            if (modCount != expectedModCount)  
                throw new ConcurrentModificationException();  
            return nextElement();  
        }  
 
        // 迭代器的remove()接口。  
        // 首先,它在table数组中找出要删除元素所在的Entry,  
        // 然后,删除单向链表Entry中的元素。  
        public void remove() {  
            if (!iterator)  
                throw new UnsupportedOperationException();  
            if (lastReturned == null)  
                throw new IllegalStateException("Hashtable Enumerator");  
            if (modCount != expectedModCount)  
                throw new ConcurrentModificationException();  
 
            synchronized(Hashtable.this) {  
                Entry[] tab = Hashtable.this.table;  
                int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;  
 
                for (Entry<K,V> e = tab[index], prev = null; e != null;  
                     prev = e, e = e.next) {  
                    if (e == lastReturned) {  
                        modCount++;  
                        expectedModCount++;  
                        if (prev == null)  
                            tab[index] = e.next;  
                        else 
                            prev.next = e.next;  
                        count--;  
                        lastReturned = null;  
                        return;  
                    }  
                }  
                throw new ConcurrentModificationException();  
            }  
        }  
    }  
 
 
    private static Enumeration emptyEnumerator = new EmptyEnumerator();  
    private static Iterator emptyIterator = new EmptyIterator();  
 
    // 空枚举类  
    // 当Hashtable的实际大小为0;此时,又要通过Enumeration遍历Hashtable时,返回的是“空枚举类”的对象。  
    private static class EmptyEnumerator implements Enumeration<Object> {  
 
        EmptyEnumerator() {  
        }  
 
        // 空枚举类的hasMoreElements() 始终返回false  
        public boolean hasMoreElements() {  
            return false;  
        }  
 
        // 空枚举类的nextElement() 抛出异常  
        public Object nextElement() {  
            throw new NoSuchElementException("Hashtable Enumerator");  
        }  
    }  
 
 
    // 空迭代器  
    // 当Hashtable的实际大小为0;此时,又要通过迭代器遍历Hashtable时,返回的是“空迭代器”的对象。  
    private static class EmptyIterator implements Iterator<Object> {  
 
        EmptyIterator() {  
        }  
 
        public boolean hasNext() {  
            return false;  
        }  
 
        public Object next() {  
            throw new NoSuchElementException("Hashtable Iterator");  
        }  
 
        public void remove() {  
            throw new IllegalStateException("Hashtable Iterator");  
        }  
 
    }  
} 

 

 

最后

以上就是冷傲悟空为你收集整理的Java集合篇:Hashtable原理详解(JDK1.8)的全部内容,希望文章能够帮你解决Java集合篇:Hashtable原理详解(JDK1.8)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(50)

评论列表共有 0 条评论

立即
投稿
返回
顶部