我是靠谱客的博主 跳跃手链,最近开发中收集的这篇文章主要介绍float和double的数据存储形式,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

C语言和C#语言中,对于浮点类型的数据采用单精度类型(float)和双精度类型(double)来存储,float数据占用32bit,double数据占用64bit,我们在声明一个变量float f= 2.25f的时候,是如何分配内存的呢?如果胡乱分配,那世界岂不是乱套了么,其实不论是float还是double在存储方式上都是遵从IEEE的规范的,float遵从的是IEEE R32.24 ,而double 遵从的是R64.53。

    无论是单精度还是双精度在存储中都分为三个部分:

  1. 符号位(Sign) : 0代表正,1代表为负
  2. 指数位(Exponent):用于存储科学计数法中的指数数据,并且采用移位存储
  3. 尾数部分(Mantissa):尾数部分

其中float的存储方式如下图所示:

float类型的存储方式

                                 1                   8                                       23

                               符号位        指数位                               尾数部分

 

而双精度的存储方式为:

 

double类型数据的存储方式

                                 1                   11                                       52

                               符号位        指数位                               尾数部分

     R32.24和R64.53的存储方式都是用科学计数法来存储数据的,比如8.25用十进制的科学计数法表示就为:8.25*clip_image0021,而120.5可以表示为:1.205*clip_image0022,这些小学的知识就不用多说了吧。而我们傻蛋计算机根本不认识十进制的数据,他只认识0,1,所以在计算机存储中,首先要将上面的数更改为二进制的科学计数法表示,8.25用二进制表示可表示为1000.01,我靠,不会连这都不会转换吧?那我估计要没辙了。120.5用二进制表示为:1110110.1用二进制的科学计数法表示1000.01可以表示为1.00001*clip_image002[2],1110110.1可以表示为1.1101101*clip_image002[3],任何一个数都的科学计数法表示都为1.xxx*clip_image002[1],尾数部分就可以表示为xxxx,第一位都是1嘛,干嘛还要表示呀?可以将小数点前面的1省略,所以23bit的尾数部分,可以表示的精度却变成了24bit,道理就是在这里,那24bit能精确到小数点后几位呢,我们知道9的二进制表示为1001,所以4bit能精确十进制中的1位小数点,24bit就能使float能精确到小数点后6位,而对于指数部分,因为指数可正可负,8位的指数位能表示的指数范围就应该为:-127-128了,所以指数部分的存储采用移位存储,存储的数据为元数据 127,下面就看看8.25和120.5在内存中真正的存储方式。

     首先看下8.25,用二进制的科学计数法表示为:1.00001*clip_image002[2]

按照上面的存储方式,符号位为:0,表示为正,指数位为:3 127=130 ,位数部分为,故8.25的存储方式如下图所示:

单精度浮点数8.25的存储方式

而单精度浮点数120.5的存储方式如下图所示:

单精度数120.5的存储方式

那么如果给出内存中一段数据,并且告诉你是单精度存储的话,你如何知道该数据的十进制数值呢?其实就是对上面的反推过程,比如给出如下内存数据:0100001011101101000000000000,首先我们现将该数据分段,0 10000 0101 110 1101 0000 0000 0000 0000,在内存中的存储就为下图所示:

根据我们的计算方式,可以计算出,这样一组数据表示为:1.1101101*clip_image002[3]=120.5

而双精度浮点数的存储和单精度的存储大同小异,不同的是指数部分和尾数部分的位数。所以这里不再详细的介绍双精度的存储方式了,只将120.5的最后存储方式图给出,大家可以仔细想想为何是这样子的

文本框: 0
100 0000 0101
1101 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

下面我就这个基础知识点来解决一个我们的一个疑惑,请看下面一段程序,注意观察输出结果

            float f = 2.2f;
            double d = (double)f;
            Console.WriteLine(d.ToString("0.0000000000000"));
            f = 2.25f;
            d = (double)f;
            Console.WriteLine(d.ToString("0.0000000000000"));

可能输出的结果让大家疑惑不解,单精度的2.2转换为双精度后,精确到小数点后13位后变为了2.2000000476837,而单精度的2.25转换为双精度后,变为了2.2500000000000,为何2.2在转换后的数值更改了而2.25却没有更改呢?很奇怪吧?其实通过上面关于两种存储结果的介绍,我们已经大概能找到答案。首先我们看看2.25的单精度存储方式,很简单 0 1000 0001 001 0000 0000 0000 0000 0000,而2.25的双精度表示为:0 100 0000 0001 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000,这样2.25在进行强制转换的时候,数值是不会变的,而我们再看看2.2呢,2.2用科学计数法表示应该为:将十进制的小数转换为二进制的小数的方法为将小数*2,取整数部分,所以0.282=0.4,所以二进制小数第一位为0.4的整数部分0,0.4×2=0.8,第二位为0,0.8*2=1.6,第三位为1,0.6×2 = 1.2,第四位为1,0.2*2=0.4,第五位为0,这样永远也不可能乘到=1.0,得到的二进制是一个无限循环的排列 00110011001100110011... ,对于单精度数据来说,尾数只能表示24bit的精度,所以2.2的float存储为:

单精度数202的存储方式

但是这样存储方式,换算成十进制的值,却不会是2.2的,应为十进制在转换为二进制的时候可能会不准确,如2.2,而double类型的数据也存在同样的问题,所以在浮点数表示中会产生些许的误差,在单精度转换为双精度的时候,也会存在误差的问题,对于能够用二进制表示的十进制数据,如2.25,这个误差就会不存在,所以会出现上面比较奇怪的输出结果。


#include <iostream>
int main () {
std::cout.precision(20);
float a=123.45678901234567890;
double b=123.45678901234567890;
std::cout << a << std::endl;
std::cout << b << std::endl;
return 0;
}
// Xcode 5.1
// Output:
// 123.456787109375
// 123.45678901234568059
// Program ended with exit code: 0


最后

以上就是跳跃手链为你收集整理的float和double的数据存储形式的全部内容,希望文章能够帮你解决float和double的数据存储形式所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(61)

评论列表共有 0 条评论

立即
投稿
返回
顶部