我是靠谱客的博主 顺利枫叶,最近开发中收集的这篇文章主要介绍Gateway之限流、熔断一、高并发带来的问题二、服务雪崩效应三、常见容错方案四、Sentinel入门五、Sentinel的概念和功能六、Sentinel规则,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

目录

  • 一、高并发带来的问题
  • 二、服务雪崩效应
  • 三、常见容错方案
  • 四、Sentinel入门
    • 1、什么是Sentinel
    • 2、安装Sentinel控制台
    • 3、实现一个接口的限流
  • 五、Sentinel的概念和功能
    • 1、基本概念
    • 2、重要功能
  • 六、Sentinel规则
    • 1、流控规则
      • ①简单配置
      • ②配置流控模式
      • ③配置流控效果
    • 2、降级规则
    • 3、热点规则
    • 4、授权规则
    • 5、系统规则
    • 6、自定义异常返回

一、高并发带来的问题

在微服务架构中,我们将业务拆分成一个个的服务,服务与服务之间可以相互调用,但是由于网络
原因或者自身的原因,服务并不能保证服务的100%可用,如果单个服务出现问题,调用这个服务就会
出现网络延迟,此时若有大量的网络涌入,会形成任务堆积,最终导致服务瘫痪。

1.修改配置文件中tomcat的并发数

1秒钟20个请求,最大连接数10,最大等待数10,最大线程数2,相当于一个线程1s能处理5个请求(2个处理10个请求)

spring:
    application:
        name: shop-order
    cloud:
        nacos:
            discovery:
                server-addr: localhost:8848
        sentinel:
            transport:
                port: 9999 #跟控制台交流的端口,随意指定一个未使用的端口即可
                dashboard: localhost:8080 # 指定控制台服务的地址
            web-context-unify: false
server:
    port: 8090
    tomcat:
        max-threads: 2     #最大线程数
        max-connections: 10  #最大连接数
        accept-count: 10     #最大线程等待数

2.接下来使用压测工具,对请求进行压力测试
下载地址https://jmeter.apache.org/

第一步:修改配置,并启动软件

进入bin目录,修改jmeter.properties文件中的语言支持为language=zh_CN,然后点击jmeter.bat,启动软件。

在这里插入图片描述
第二步:添加线程组
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
第三步:配置线程并发数
在这里插入图片描述
第四步:添加Http取样
在这里插入图片描述
第五步:配置取样,并启动测试
在这里插入图片描述
访问message方法观察效果

结论:
此时会发现, 由于order方法囤积了大量请求, 导致message方法的访问出现了问题,这就是服务雪崩的雏形。

在这里插入图片描述

二、服务雪崩效应

在分布式系统中,由于网络原因或自身的原因,服务一般无法保证 100% 可用。如果一个服务出现了
问题,调用这个服务就会出现线程阻塞的情况,此时若有大量的请求涌入,就会出现多条线程阻塞等
待,进而导致服务瘫痪。
由于服务与服务之间的依赖性,故障会传播,会对整个微服务系统造成灾难性的严重后果,这就是
服务故障的 “雪崩效应” 。

在这里插入图片描述

雪崩发生的原因多种多样,有不合理的容量设计,或者是高并发下某一个方法响应变慢,亦或是某
台机器的资源耗尽。我们无法完全杜绝雪崩源头的发生,只有做好足够的容错,保证在一个服务发生问
题,不会影响到其它服务的正常运行。也就是"雪落而不雪崩"

三、常见容错方案

要防止雪崩的扩散,我们就要做好服务的容错,容错说白了就是保护自己不被猪队友拖垮的一些措
施, 下面介绍常见的服务容错思路和组件。
常见的容错思路
常见的容错思路有隔离、超时、限流、熔断、降级这几种,下面分别介绍一下。
隔离
它是指将系统按照一定的原则划分为若干个服务模块,各个模块之间相对独立,无强依赖。当有故
障发生时,能将问题和影响隔离在某个模块内部,而不扩散风险,不波及其它模块,不影响整体的
系统服务。常见的隔离方式有:线程池隔离和信号量隔离.

在这里插入图片描述

  • 超时
    在上游服务调用下游服务的时候,设置一个最大响应时间,如果超过这个时间,下游未作出反应,
    就断开请求,释放掉线程。

在这里插入图片描述

限流
限流就是限制系统的输入和输出流量已达到保护系统的目的。为了保证系统的稳固运行,一旦达到
的需要限制的阈值,就需要限制流量并采取少量措施以完成限制流量的目的。

在这里插入图片描述

熔断 在互联网系统中,当下游服务因访问压力过大而响应变慢或失败,上游服务为了保护系统整
体的可用性,可以暂时切断对下游服务的调用。这种牺牲局部,保全整体的措施就叫做熔断

在这里插入图片描述

服务熔断一般有三种状态:

  • 熔断关闭状态(Closed)
    服务没有故障时,熔断器所处的状态,对调用方的调用不做任何限制
  • 熔断开启状态(Open)
    后续对该服务接口的调用不再经过网络,直接执行本地的fallback方法
  • 半熔断状态(Half-Open)
    尝试恢复服务调用,允许有限的流量调用该服务,并监控调用成功率。如果成功率达到预
    期,则说明服务已恢复,进入熔断关闭状态;如果成功率仍旧很低,则重新进入熔断关闭状
    态。

降级
降级其实就是为服务提供一个托底方案,一旦服务无法正常调用,就使用托底方案。

在这里插入图片描述

常见的容错组件

  • Hystrix
    Hystrix是由Netflix开源的一个延迟和容错库,用于隔离访问远程系统、服务或者第三方库,防止
    级联失败,从而提升系统的可用性与容错性。

  • Resilience4J
    Resilicence4J一款非常轻量、简单,并且文档非常清晰、丰富的熔断工具,这也是Hystrix官方推
    荐的替代产品。不仅如此,Resilicence4j还原生支持Spring Boot 1.x/2.x,而且监控也支持和
    prometheus等多款主流产品进行整合。

  • Sentinel
    Sentinel 是阿里巴巴开源的一款断路器实现,本身在阿里内部已经被大规模采用,非常稳定。

    下面是三个组件在各方面的对比:
    在这里插入图片描述

四、Sentinel入门

1、什么是Sentinel

Sentinel (分布式系统的流量防卫兵) 是阿里开源的一套用于服务容错的综合性解决方案。它以流量
为切入点, 从流量控制、熔断降级、系统负载保护等多个维度来保护服务的稳定性。
Sentinel 具有以下特征:

  • 丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景, 例如秒杀(即
    突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用
    应用等。

  • 完备的实时监控:Sentinel 提供了实时的监控功能。通过控制台可以看到接入应用的单台机器秒
    级数据, 甚至 500 台以下规模的集群的汇总运行情况。

  • 广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块, 例如与 Spring
    Cloud、Dubbo、gRPC 的整合。只需要引入相应的依赖并进行简单的配置即可快速地接入
    Sentinel。

  • 完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快
    速地定制逻辑。例如定制规则管理、适配动态数据源等。

Sentinel 分为两个部分:

  • 核心库(Java 客户端)不依赖任何框架/库,能够运行于所有 Java 运行时环境,同时对 Dubbo /
    Spring Cloud 等框架也有较好的支持。
  • 控制台(Dashboard)基于 Spring Boot 开发,打包后可以直接运行,不需要额外的 Tomcat 等
    应用容器。

微服务集成Sentinel
为微服务集成Sentinel非常简单, 只需要加入Sentinel的依赖即可
1 在订单模块(shop-order)的pom.xml中加入下面依赖

<!--sentinel-->
<dependency>
	<groupId>com.alibaba.cloud</groupId>
	<artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

2 编写一个Controller测试使用

@RequestMapping("/message1")
    public String message1(){
        System.out.println("message1..................................");
        return "message1....";
    }

2、安装Sentinel控制台

Sentinel 提供一个轻量级的控制台, 它提供机器发现、单机资源实时监控以及规则管理等功能。
1 下载jar包,解压到文件夹
https://github.com/alibaba/Sentinel/releases
2 启动控制台
直接使用jar命令启动项目(控制台本身是一个SpringBoot项目)
java -Dserver.port=8080 -Dcsp.sentinel.dashboard.server=localhost:8080 -Dproject.name=sentinel-dashboard -jar sentinel-dashboard-1.7.0.jar
参考1
java -jar sentinel-dashboard-1.8.1.jar --server.port=8080
参考2
java -Dserver.port=8080 -Dcsp.sentinel.dashboard.server=localhost:8080 -Dproject.name=sentinel-dashboard -jar sentinel-dashboard-1.8.1.jar
3 修改shop-order ,在里面加入有关控制台的配置

spring:
    application:
        name: shop-order
    cloud:
        nacos:
            discovery:
                server-addr: localhost:8848
        sentinel:
            transport:
                port: 9999 #跟控制台交流的端口,随意指定一个未使用的端口即可
                dashboard: localhost:8080 # 指定控制台服务的地址
            web-context-unify: false
server:
    port: 8090
    tomcat:
        max-threads: 2     #最大线程数
        max-connections: 10  #最大连接数
        accept-count: 10     #最大线程等待数

4 通过浏览器访问localhost:8080 进入控制台 ( 默认用户名密码是 sentinel/sentinel )
在这里插入图片描述
补充:了解控制台的使用原理
Sentinel的控制台其实就是一个SpringBoot编写的程序。我们需要将我们的微服务程序注册到控制台上,
即在微服务中指定控制台的地址, 并且还要开启一个跟控制台传递数据的端口, 控制台也可以通过此端口
调用微服务中的监控程序获取微服务的各种信息。

在这里插入图片描述

3、实现一个接口的限流

1 通过控制台为message1添加一个流控规则
在这里插入图片描述

五、Sentinel的概念和功能

1、基本概念

资源就是Sentinel要保护的东西
资源是 Sentinel 的关键概念。它可以是 Java 应用程序中的任何内容,可以是一个服务,也可以是
一个方法,甚至可以是一段代码。

  • 我们入门案例中的message1方法就可以认为是一个资源
  • 规则
    规则就是用来定义如何进行保护资源的
    作用在资源之上, 定义以什么样的方式保护资源,主要包括流量控制规则、熔断降级规则以及系统
    保护规则。
    • 我们入门案例中就是为message1资源设置了一种流控规则, 限制了进入message1的流量

2、重要功能

Sentinel的主要功能就是容错,主要体现为下面这三个:
在这里插入图片描述

  • 流量控制
    流量控制在网络传输中是一个常用的概念,它用于调整网络包的数据。任意时间到来的请求往往是
    随机不可控的,而系统的处理能力是有限的。我们需要根据系统的处理能力对流量进行控制。
    Sentinel 作为一个调配器,可以根据需要把随机的请求调整成合适的形状。

  • 熔断降级
    当检测到调用链路中某个资源出现不稳定的表现,例如请求响应时间长或异常比例升高的时候,则
    对这个资源的调用进行限制,让请求快速失败,避免影响到其它的资源而导致级联故障。
    Sentinel 对这个问题采取了两种手段:

    • 通过并发线程数进行限制
      Sentinel 通过限制资源并发线程的数量,来减少不稳定资源对其它资源的影响。当某个资源
      出现不稳定的情况下,例如响应时间变长,对资源的直接影响就是会造成线程数的逐步堆
      积。当线程数在特定资源上堆积到一定的数量之后,对该资源的新请求就会被拒绝。堆积的
      线程完成任务后才开始继续接收请求。

    • 通过响应时间对资源进行降级
      除了对并发线程数进行控制以外,Sentinel 还可以通过响应时间来快速降级不稳定的资源。
      当依赖的资源出现响应时间过长后,所有对该资源的访问都会被直接拒绝,直到过了指定的
      时间窗口之后才重新恢复。

      Sentinel 和 Hystrix 的区别
      两者的原则是一致的, 都是当一个资源出现问题时, 让其快速失败, 不要波及到其它服务
      但是在限制的手段上, 确采取了完全不一样的方法:
      Hystrix 采用的是线程池隔离的方式, 优点是做到了资源之间的隔离, 缺点是增加了线程
      切换的成本。
      Sentinel 采用的是通过并发线程的数量和响应时间来对资源做限制。

  • 系统负载保护
    Sentinel 同时提供系统维度的自适应保护能力。当系统负载较高的时候,如果还持续让
    请求进入可能会导致系统崩溃,无法响应。在集群环境下,会把本应这台机器承载的流量转发到其
    它的机器上去。如果这个时候其它的机器也处在一个边缘状态的时候,Sentinel 提供了对应的保
    护机制,让系统的入口流量和系统的负载达到一个平衡,保证系统在能力范围之内处理最多的请
    求。
    总之一句话: 我们需要做的事情,就是在Sentinel的资源上配置各种各样的规则,来实现各种容错的功能

六、Sentinel规则

1、流控规则

流量控制,其原理是监控应用流量的QPS(每秒查询率) 或并发线程数等指标,当达到指定的阈值时
对流量进行控制,以避免被瞬时的流量高峰冲垮,从而保障应用的高可用性。
第1步: 点击簇点链路,我们就可以看到访问过的接口地址,然后点击对应的流控按钮,进入流控规则配
置页面。新增流控规则界面如下:

在这里插入图片描述
资源名:唯一名称,默认是请求路径,可自定义
针对来源:指定对哪个微服务进行限流,默认指default,意思是不区分来源,全部限制
阈值类型/单机阈值

  • QPS(每秒请求数量): 当调用该接口的QPS达到阈值的时候,进行限流
  • 线程数:当调用该接口的线程数达到阈值的时候,进行限流

是否集群:暂不需要集群
接下来我们以QPS为例来研究限流规则的配置。

①简单配置

我们先做一个简单配置,设置阈值类型为QPS,单机阈值为3。即每秒请求量大于3的时候开始限流。
接下来,在流控规则页面就可以看到这个配置。

在这里插入图片描述
然后快速访问/order/message1 接口,观察效果。此时发现,当QPS > 3的时候,服务就不能正常响
应,而是返回Blocked by Sentinel (flow limiting)结果。

②配置流控模式

点击上面设置流控规则的编辑按钮,然后在编辑页面点击高级选项,会看到有流控模式一栏。
在这里插入图片描述
sentinel共有三种流控模式,分别是:

  • 直接(默认):接口达到限流条件时,开启限流
  • 关联:当关联的资源达到限流条件时,开启限流 [适合做应用让步]
  • 链路:当从某个接口过来的资源达到限流条件时,开启限流

下面呢分别演示三种模式:
直接流控模式
直接流控模式是最简单的模式,当指定的接口达到限流条件时开启限流。上面案例使用的就是直接流控
模式。
关联流控模式
关联流控模式指的是,当指定接口关联的接口达到限流条件时,开启对指定接口开启限流。
第1步:配置限流规则, 将流控模式设置为关联,关联资源设置为的 /order/message2。
在这里插入图片描述

第3步:通过postman软件向/order/message2连续发送请求,注意QPS一定要大于3
第4步:访问/order/message1,会发现已经被限流
链路流控模式
链路流控模式指的是,当从某个接口过来的资源达到限流条件时,开启限流。它的功能有点类似于针对
来源配置项,区别在于:针对来源是针对上级微服务,而链路流控是针对上级接口,也就是说它的粒度
更细。
第1步: 编写一个service,在里面添加一个方法message
第2步: 在Controller中声明两个方法,分别调用service中的方法message
OrderController:

package com.xnx.shoporder.controller;

import com.xnx.model.Order;
import com.xnx.model.Product;
import com.xnx.model.User;
import com.xnx.shoporder.service.OrderServiceImpl2;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.client.RestTemplate;

import java.util.Map;
import java.util.concurrent.TimeUnit;

/**
 * @author xnx
 * @create 2022-11-24 14:57
 */
@RestController
@RequestMapping("/order")
public class OrderController {
    @Autowired
    private RestTemplate restTemplate;

    @RequestMapping("/get/{uid}/{pid}")
    public Order get(@PathVariable("uid") Integer uid,@PathVariable("pid") Integer pid){
        /**
         * 要在订单微服务调用 用户微服务、商品微服务,跨项目调用
         */
        User user = restTemplate.getForObject("http://localhost:8070/user/get/" + uid, User.class);
        Product product = restTemplate.getForObject("http://localhost:8081/product/get/" + pid, Product.class);
        Order order = new Order();
        order.setUsername(user.getUsername());
        order.setUid(user.getUid());
        order.setPprice(product.getPprice());
        order.setPname(product.getPname());
        order.setPid(product.getPid());
        order.setOid(System.currentTimeMillis());
        order.setNumber(product.getStock());
        return order;
    }

    //    流控模式:关联模式
    @RequestMapping("/message1")
    public String message1(){
        System.out.println("message1..................................");
        return "message1....";
    }

    //    sentinel中的熔断降级:平均响应时间
//    预测的结果:平均时间大于0.22s,那么会出现降级处理结果
//    如果平均时间小于0.22s,就正常响应结果
    @RequestMapping("/message2")
    public String message2() {
        try {
//        代表当前方法至少需要执行0.22s
            TimeUnit.MILLISECONDS.sleep(220);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        return "message2";
    }

    @Autowired
    private OrderServiceImpl2 orderService;
    //        主要讲解 sentinel 中的 链路流控模式
    @RequestMapping("/message3")
    public Map message3() {
        return orderService.message();
    }
    @RequestMapping("/message4")
    public Map message4() {
        return orderService.message();
    }

    //    sentinel中的熔断降级:异常比例
    int i = 0;
    @RequestMapping("/message5")
    public String message5() {
        i++;
        //异常比例为0.333
        if (i % 3 == 0){
            throw new RuntimeException();
        }
        return "message5";
    }
}

OrderServiceImpl2:

package com.xnx.shoporder.service;

import com.alibaba.csp.sentinel.annotation.SentinelResource;
import com.alibaba.csp.sentinel.slots.block.BlockException;
import org.springframework.stereotype.Service;

import java.util.HashMap;
import java.util.Map;

/**
 * @author xnx
 * @create 2022-11-30 21:48
 */
@Service
public class OrderServiceImpl2 {
    @SentinelResource(value = "message", blockHandler = "failBlockHandler")
    public Map message() {
        Map map = new HashMap();
        map.put("code","200");
        map.put("msg","正常响应成功");
        return map;
    }

    public Map failBlockHandler(BlockException be) {
        Map map = new HashMap();
        map.put("code","-1");
        map.put("msg","接口被限流了...");
        return map;
    }
}

第3步: 禁止收敛URL的入口 context
从1.6.3 版本开始,Sentinel Web filter默认收敛所有URL的入口context,因此链路限流不生效。
1.7.0 版本开始(对应SCA的2.1.1.RELEASE),官方在CommonFilter 引入了
WEB_CONTEXT_UNIFY 参数,用于控制是否收敛context。将其配置为 false 即可根据不同的
URL 进行链路限流。
SCA 2.1.1.RELEASE之后的版本,可以通过配置spring.cloud.sentinel.web-context-unify=false即
可关闭收敛

第4步: 控制台配置限流规则
在这里插入图片描述
第5步: 分别通过/order/message1 和/order/message2 访问, 发现2没问题, 1的被限流了

③配置流控效果

快速失败(默认): 直接失败,抛出异常,不做任何额外的处理,是最简单的效果
Warm Up:它从开始阈值到最大QPS阈值会有一个缓冲阶段,一开始的阈值是最大QPS阈值的
1/3,然后慢慢增长,直到最大阈值,适用于将突然增大的流量转换为缓步增长的场景。
**排队等待:**让请求以均匀的速度通过,单机阈值为每秒通过数量,其余的排队等待; 它还会让设
置一个超时时间,当请求超过超时间时间还未处理,则会被丢弃。

2、降级规则

降级规则就是设置当满足什么条件的时候,对服务进行降级。Sentinel提供了三个衡量条件:

  • 平均响应时间 :当资源的平均响应时间超过阈值(以 ms 为单位)之后,资源进入准降级状态。
    在这里插入图片描述

异常比例:当资源的每秒异常总数占通过量的比值超过阈值之后,资源进入降级状态,即在接下的时间窗口(以 s 为单位)之内,对这个方法的调用都会自动地返回。异常比率的阈值范围是 [0.0,1.0]。

在这里插入图片描述
第1步: 首先模拟一个异常
第2步: 设置异常比例为0.2

异常数 :当资源近 1 分钟的异常数目超过阈值之后会进行服务降级。注意由于统计时间窗口是分钟级别的,若时间窗口小于 60s,则结束熔断状态后仍可能再进入熔断状态。
问题:
流控规则和降级规则返回的异常页面是一样的,我们怎么来区分到底是什么原因导致的呢?

3、热点规则

热点参数流控规则是一种更细粒度的流控规则, 它允许将规则具体到参数上。
热点规则简单使用
第1步: 编写代码
第2步: 配置热点规则
第3步: 分别用两个参数访问,会发现只对第一个参数限流了
热点规则增强使用
参数例外项允许对一个参数的具体值进行流控
编辑刚才定义的规则,增加参数例外项

4、授权规则

很多时候,我们需要根据调用来源来判断该次请求是否允许放行,这时候可以使用 Sentinel 的来源
访问控制的功能。来源访问控制根据资源的请求来源(origin)限制资源是否通过:
若配置白名单,则只有请求来源位于白名单内时才可通过;
若配置黑名单,则请求来源位于黑名单时不通过,其余的请求通过。
上面的资源名和授权类型不难理解,但是流控应用怎么填写呢?
其实这个位置要填写的是来源标识,Sentinel提供了RequestOriginParser 接口来处理来源。
只要Sentinel保护的接口资源被访问,Sentinel就会调用RequestOriginParser 的实现类去解析
访问来源。
第1步: 自定义来源处理规则
第2步: 授权规则配置
这个配置的意思是只有serviceName=pc不能访问(黑名单)
第3步: 访问 http://localhost:8090/order/message1?serviceName=pc观察结果

5、系统规则

系统保护规则是从应用级别的入口流量进行控制,从单台机器的总体 Load、RT、入口 QPS 、CPU
使用率和线程数五个维度监控应用数据,让系统尽可能跑在最大吞吐量的同时保证系统整体的稳定性。
系统保护规则是应用整体维度的,而不是资源维度的,并且仅对入口流量 (进入应用的流量) 生效。

  • Load(仅对 Linux/Unix-like 机器生效):当系统 load1 超过阈值,且系统当前的并发线程数超过
    系统容量时才会触发系统保护。系统容量由系统的 maxQps * minRt 计算得出。设定参考值一般
    是 CPU cores * 2.5。
  • RT:当单台机器上所有入口流量的平均 RT 达到阈值即触发系统保护,单位是毫秒。
  • 线程数:当单台机器上所有入口流量的并发线程数达到阈值即触发系统保护。
  • 入口 QPS:当单台机器上所有入口流量的 QPS 达到阈值即触发系统保护。
  • CPU使用率:当单台机器上所有入口流量的 CPU使用率达到阈值即触发系统保护。

6、自定义异常返回

在这里插入图片描述

BlockException 异常接口,包含Sentinel的五个异常

  • FlowException 限流异常
  • DegradeException 降级异常
  • ParamFlowException 参数限流异常
  • AuthorityException 授权异常
  • SystemBlockException 系统负载异常
package com.xnx.shoporder.config;

import com.alibaba.csp.sentinel.adapter.spring.webmvc.callback.BlockExceptionHandler;
import com.alibaba.csp.sentinel.slots.block.BlockException;
import com.alibaba.csp.sentinel.slots.block.degrade.DegradeException;
import com.alibaba.csp.sentinel.slots.block.flow.FlowException;
import com.alibaba.fastjson.JSON;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.springframework.stereotype.Component;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

/**
 * @author xnx
 * @create 2022-11-30 22:08
 */
//异常处理页面
@Component
public class ExceptionHandlerPage implements BlockExceptionHandler {
    @Override
    public void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {
        response.setContentType("application/json;charset=utf-8");
        ResponseData data = null;
        if (e instanceof FlowException) {
            data = new ResponseData(-1, "接口被限流了...");
        } else if (e instanceof DegradeException) {
//            在这里面可以写很多业务逻辑处理代码
            data = new ResponseData(-2, "接口被降级了...");
        }
        response.getWriter().write(JSON.toJSONString(data));
    }
}

@Data
@AllArgsConstructor//全参构造
@NoArgsConstructor//无参构造
class ResponseData {
    private int code;
    private String message;
}

最后

以上就是顺利枫叶为你收集整理的Gateway之限流、熔断一、高并发带来的问题二、服务雪崩效应三、常见容错方案四、Sentinel入门五、Sentinel的概念和功能六、Sentinel规则的全部内容,希望文章能够帮你解决Gateway之限流、熔断一、高并发带来的问题二、服务雪崩效应三、常见容错方案四、Sentinel入门五、Sentinel的概念和功能六、Sentinel规则所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(53)

评论列表共有 0 条评论

立即
投稿
返回
顶部