我是靠谱客的博主 愉快摩托,最近开发中收集的这篇文章主要介绍python 读取tensorflow模型的参数,并重新写入.mat文件,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

因为现有工作一部分在python,一部分在C++,需要将tensorflow已经训练好的模型应用到C++程序中,选择比较笨的折中办法,先将模型参数写入mat文件,然后再用C++读取mat文件。

读取模型数据并存储为.mat文件

我训练的模型就是tf-MNIST,tensorflow的官方例子。

关于tensorflow模型的保存和读取可看这篇文章。

import numpy as np
import tensorflow as tf
import scipy.io as sio
if __name__ == "__main__":
with tf.Session() as sess:
# load the meta graph and weights
saver = tf.train.import_meta_graph('model_2minist.ckpt-70.meta')
saver.restore(sess, tf.train.latest_checkpoint('model_2/'))
# get weighs
graph = tf.get_default_graph()
conv1_w = sess.run(graph.get_tensor_by_name('conv1/w:0'))
sio.savemat("weights/conv1_w.mat", {"array": conv1_w})
conv1_b = sess.run(graph.get_tensor_by_name('conv1/b:0'))
sio.savemat("weights/conv1_b.mat", {"array": conv1_b})
conv2_w = sess.run(graph.get_tensor_by_name('conv2/w:0'))
sio.savemat("weights/conv2_w.mat", {"array": conv2_w})
conv2_b = sess.run(graph.get_tensor_by_name('conv2/b:0'))
sio.savemat("weights/conv2_b.mat", {"array": conv2_b})
fc1_w = sess.run(graph.get_tensor_by_name('fc1/w:0'))
sio.savemat("weights/fc1_w.mat", {"array": fc1_w})
fc1_b = sess.run(graph.get_tensor_by_name('fc1/b:0'))
sio.savemat("weights/fc1_b.mat", {"array": fc1_b})
fc2_w = sess.run(graph.get_tensor_by_name('fc2/w:0'))
sio.savemat("weights/fc2_w.mat", {"array": fc2_w})
fc2_b = sess.run(graph.get_tensor_by_name('fc2/b:0'))
sio.savemat("weights/fc2_b.mat", {"array": fc2_b})

最后

以上就是愉快摩托为你收集整理的python 读取tensorflow模型的参数,并重新写入.mat文件的全部内容,希望文章能够帮你解决python 读取tensorflow模型的参数,并重新写入.mat文件所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(46)

评论列表共有 0 条评论

立即
投稿
返回
顶部