我是靠谱客的博主 着急枕头,最近开发中收集的这篇文章主要介绍注意力机制如何助力GAN生成更高质量的图像?,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

 前人工作

论文Unsupervised attention-guided image-to-image translation和论文Attention-GAN for Object Trans l ation in Wild Images都对注意力机制与GAN结合进行了研究,但是都将attention用于分离前景(foreground)和后景(background),主要做法为:

将生成器网络拆成两部分,第一部分为预测网络(用于预测感兴趣的区域),第二部分为转换器网络(用于两个域之间图像的转换)。

论文Attention-GAN for Object Trans l ation in Wild Images主要思想为:

使用输入image的分割注释作为额外的监督信息来训练注意力网络,然后将注意力图应用于转换器网络的输出,从而将输入图像的背景用作输出背景,从而提高生成图像质量。

 SPA-GAN

论文SPA-GAN发表于2020年TOM(IEEE Transactions on Multimedia)

名称:SPA-GAN: Spatial Attention GAN for Image-to-Image Translation (SPA-GAN)

期刊:IEEE Transactions on Multimedia 2020

作者:Hajar Emami, Majid Moradi Aliabadi, Ming Dong, and Ratna Babu Chinnam

单位:Computer Science Department, Wayne State University, Detroit, Michigan United States

主要内容

SPA-GAN在CycleGAN网络结构的基础上,从判别器输出注意力图并输入生成器中用于协助生成器关注图像中更多有区分度的区域,并修改了循环一致性损失并增加特征图损失(与解码器第一层输出运算),SPA-GAN作为最新的研究成果具有最低的KID和最高的分类准确率;不足之处在于理论基础欠缺,特别是在消融实验部分关于使用编码器和解码器第几层的输出用于计算特征图损失的解释欠缺,只是从实验结果出发来分析。

主要贡献

(1)将attention机制用于将判别器中,并将其结果反馈到生成器(反馈的是一个空间注意力图spatial atten tion map ,空间注意力图的内容是判别器用于判别输入图像真假的局域),从而让生成器给有明显区分的区域给予高的权重,作者还说这样做还能更大程度保留域特有的一些特征; 在生成网络中,驱使在解码器第一层获得的特征图为真实图像与生成图像中识别的感兴趣区域相匹配; 将attention作为一种从判别器迁移知识到生成器的机制,从而使判别器更好地帮助生成器更明确具有区分度的区域。

(2)更改循环一致性损失和新加入了生成器特征图损失(目的是保留域的特定特征)。

(3)与之前的添加注意力机制的GAN不同(不同在于之前的方法要么需要额外的监督信息,要么需要单独的注意力网络,给GPU带来计算负担),而SPA-GAN是一种轻量级模型。文章转自:http://www.pjzj.com.cn/sitemap.xml
郑重声明:本文转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

最后

以上就是着急枕头为你收集整理的注意力机制如何助力GAN生成更高质量的图像?的全部内容,希望文章能够帮你解决注意力机制如何助力GAN生成更高质量的图像?所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(43)

评论列表共有 0 条评论

立即
投稿
返回
顶部