概述
主要方法有:编辑距离、余弦相似度、模糊相似度百分比
1 编辑距离
- 编辑距离(Levenshtein距离)详解(附python实现)
- 使用Python计算文本相似性之编辑距离
def levenshtein(first, second):
''' 编辑距离算法(LevD)
Args: 两个字符串
returns: 两个字符串的编辑距离 int
'''
if len(first) > len(second):
first, second = second, first
if len(first) == 0:
return len(second)
if len(second) == 0:
return len(first)
first_length = len(first) + 1
second_length = len(second) + 1
distance_matrix = [list(range(second_length)) for x in range(first_length)]
# print distance_matrix
for i in range(1, first_length):
for j in range(1, second_length):
deletion = distance_matrix[i - 1][j] + 1
insertion = distance_matrix[i][j - 1] + 1
substitution = distance_matrix[i - 1][j - 1]
if first[i - 1] != second[j - 1]:
substitution += 1
distance_matrix[i][j] = min(insertion, deletion, substitution)
# print distance_matrix
return distance_matrix[first_length - 1][second_length - 1]
str1="hello,good moring"
str2="hi,good moring"
edit_distance=levenshtein(str1,str2)
edit_distance
4
2 余弦相似度
- 余弦计算相似度度量
- python用余弦相似度计算英文文本相似度
- https://blog.csdn.net/u013749540/article/details/51813922图片很美
import math
import re
import datetime
import time
text1 = "This game is one of the very best. games ive
played. the
;pictures? "
"cant descripe the real graphics in the game."
text2 = "this game have/ is3 one of the very best. games ive
played. the
;pictures? "
"cant descriPe now the real graphics in the game."
text3 = "So in the picture i saw a nice size detailed metal puzzle. Eager to try since I enjoy 3d wood puzzles, i ordered it. Well to my disappointment I got in the mail a small square about 4 inches around. And to add more disappointment when I built it it was smaller than the palm of my hand. For the price it should of been much much larger. Don't be fooled. It's only worth $5.00.Update 4/15/2013I have bought and completed 13 of these MODELS from A.C. Moore for $5.99 a piece, so i stand by my comment that thiss one is overpriced. It was still fun to build just like all the others from the maker of this brand.Just be warned, They are small."
text4 = "I love it when an author can bring you into their made up world and make you feel like a friend, confidant, or family. Having a special child of my own I could relate to the teacher and her madcap class. I've also spent time in similar classrooms and enjoyed the uniqueness of each and every child. Her story drew me into their world and had me laughing so hard my family thought I had lost my mind, so I shared the passage so they could laugh with me. Read this book if you enjoy a book with strong women, you won't regret it."
def compute_cosine(text_a, text_b):
# 找单词及词频
words1 = text_a.split(' ')
words2 = text_b.split(' ')
# print(words1)
words1_dict = {}
words2_dict = {}
for word in words1:
# word = word.strip(",.?!;")
word = re.sub('[^a-zA-Z]', '', word)
word = word.lower()
# print(word)
if word != '' and word in words1_dict: # 这里改动了
num = words1_dict[word]
words1_dict[word] = num + 1
elif word != '':
words1_dict[word] = 1
else:
continue
for word in words2:
# word = word.strip(",.?!;")
word = re.sub('[^a-zA-Z]', '', word)
word = word.lower()
if word != '' and word in words2_dict:
num = words2_dict[word]
words2_dict[word] = num + 1
elif word != '':
words2_dict[word] = 1
else:
continue
print(words1_dict)
print(words2_dict)
# 排序
dic1 = sorted(words1_dict.items(), key=lambda asd: asd[1], reverse=True)
dic2 = sorted(words2_dict.items(), key=lambda asd: asd[1], reverse=True)
print(dic1)
print(dic2)
# 得到词向量
words_key = []
for i in range(len(dic1)):
words_key.append(dic1[i][0])
# 向数组中添加元素
for i in range(len(dic2)):
if dic2[i][0] in words_key:
# print 'has_key', dic2[i][0]
pass
else:
# 合并
words_key.append(dic2[i][0])
# print(words_key)
vect1 = []
vect2 = []
for word in words_key:
if word in words1_dict:
vect1.append(words1_dict[word])
else:
vect1.append(0)
if word in words2_dict:
vect2.append(words2_dict[word])
else:
vect2.append(0)
print(vect1)
print(vect2)
# 计算余弦相似度
sum = 0
sq1 = 0
sq2 = 0
for i in range(len(vect1)):
sum += vect1[i] * vect2[i]
sq1 += pow(vect1[i], 2)
sq2 += pow(vect2[i], 2)
try:
result = round(float(sum) / (math.sqrt(sq1) * math.sqrt(sq2)), 2)
except ZeroDivisionError:
result = 0.0
# print(result)
return result
if __name__ == '__main__':
result=compute_cosine(text1, text2)
print(result)
{'this': 1, 'game': 2, 'is': 1, 'one': 1, 'of': 1, 'the': 4, 'very': 1, 'best': 1, 'games': 1, 'ive': 1, 'played': 1, 'pictures': 1, 'cant': 1, 'descripe': 1, 'real': 1, 'graphics': 1, 'in': 1}
{'this': 1, 'game': 2, 'have': 1, 'is': 1, 'one': 1, 'of': 1, 'the': 4, 'very': 1, 'best': 1, 'games': 1, 'ive': 1, 'played': 1, 'pictures': 1, 'cant': 1, 'descripe': 1, 'now': 1, 'real': 1, 'graphics': 1, 'in': 1}
[('the', 4), ('game', 2), ('this', 1), ('is', 1), ('one', 1), ('of', 1), ('very', 1), ('best', 1), ('games', 1), ('ive', 1), ('played', 1), ('pictures', 1), ('cant', 1), ('descripe', 1), ('real', 1), ('graphics', 1), ('in', 1)]
[('the', 4), ('game', 2), ('this', 1), ('have', 1), ('is', 1), ('one', 1), ('of', 1), ('very', 1), ('best', 1), ('games', 1), ('ive', 1), ('played', 1), ('pictures', 1), ('cant', 1), ('descripe', 1), ('now', 1), ('real', 1), ('graphics', 1), ('in', 1)]
[4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]
[4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
0.97
3 FuzzyWuzzy
- fuzzywuzzy
- FuzzyWuzzy: Fuzzy String Matching in Python
from fuzzywuzzy import fuzz
fuzz.ratio("this is a test", "this is a test!")
97
最后
以上就是潇洒毛巾为你收集整理的计算两个字符串相(或句子)似度的方法1 编辑距离2 余弦相似度3 FuzzyWuzzy的全部内容,希望文章能够帮你解决计算两个字符串相(或句子)似度的方法1 编辑距离2 余弦相似度3 FuzzyWuzzy所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复