tf.nn.sparse_softmax_cross_entropy_with_logits(_sentinel=None,labels=None,logits=None,name=None) 函数是将softmax和cross_entropy放在一起计算,对于分类问题而言,最后一般都是一个单层全连接神经网络,比如softmax分类器居多,对这个函数而言,tensorflow神经网络中是没有softmax层,而是在这个函数中进行softmax函数的计算。这里的logits通常是最后的全连接层的输出结果,labels是具体哪一类的标签,这个函数是直接使用标签数据的,而不是采用one-hot编码形式。
最后
以上就是奋斗跳跳糖最近收集整理的关于tf.nn.sparse_softmax_cross_entropy_with_logits()函数的用法的全部内容,更多相关tf.nn.sparse_softmax_cross_entropy_with_logits()函数内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复