我是靠谱客的博主 优秀金针菇,最近开发中收集的这篇文章主要介绍RISC-V Assembly Programmer's ManualRISC-V Assembly Programmer’s ManualCopyright and License InformationCommand-Line ArgumentsRegistersAddressingInstruction SetRISC-V User Level ISA SpecificationRISC-V Privileged ISA Specification,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

The source link of this file as below show:
https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md

RISC-V Assembly Programmer’s Manual

Copyright and License Information

The RISC-V Assembly Programmer’s Manual is

© 2017 Palmer Dabbelt palmer@dabbelt.com
© 2017 Michael Clark michaeljclark@mac.com
© 2017 Alex Bradbury asb@lowrisc.org

It is licensed under the Creative Commons Attribution 4.0 International License
(CC-BY 4.0). The full license text is available at
https://creativecommons.org/licenses/by/4.0/.

Command-Line Arguments

I think it’s probably better to beef up the binutils documentation rather than
duplicating it here.

Registers

Registers are the most important part of any processor. RISC-V defines various
types, depending on which extensions are included: The general registers (with
the program counter), control registers, floating point registers (F extension),
and vector registers (V extension).

General registers

The RV32I base integer ISA includes 32 registers, named x0 to x31. The
program counter PC is separate from these registers, in contrast to other
processors such as the ARM-32. The first register, x0, has a special function:
Reading it always returns 0 and writes to it are ignored. As we will see later,
this allows various tricks and simplifications.

In practice, the programmer doesn’t use this notation for the registers. Though
x1 to x31 are all equally general-use registers as far as the processor is
concerned, by convention certain registers are used for special tasks. In
assembler, they are given standardized names as part of the RISC-V application
binary interface
(ABI). This is what you will usually see in code listings. If
you really want to see the numeric register names, the -M argument to objdump
will provide them.

RegisterABIUse by conventionPreserved?
x0zerohardwired to 0, ignores writesn/a
x1rareturn address for jumpsno
x2spstack pointeryes
x3gpglobal pointern/a
x4tpthread pointern/a
x5t0temporary register 0no
x6t1temporary register 1no
x7t2temporary register 2no
x8s0 or fpsaved register 0 or frame pointeryes
x9s1saved register 1yes
x10a0return value or function argument 0no
x11a1return value or function argument 1no
x12a2function argument 2no
x13a3function argument 3no
x14a4function argument 4no
x15a5function argument 5no
x16a6function argument 6no
x17a7function argument 7no
x18s2saved register 2yes
x19s3saved register 3yes
x20s4saved register 4yes
x21s5saved register 5yes
x22s6saved register 6yes
x23s7saved register 7yes
x24s8saved register 8yes
x25s9saved register 9yes
x26s10saved register 10yes
x27s11saved register 11yes
x28t3temporary register 3no
x29t4temporary register 4no
x30t5temporary register 5no
x31t6temporary register 6no
pc(none)program countern/a

Registers of the RV32I. Based on RISC-V documentation and Patterson and
Waterman “The RISC-V Reader” (2017)

As a general rule, the saved registers s0 to s11 are preserved across
function calls, while the argument registers a0 to a7 and the
temporary registers t0 to t6 are not. The use of the various
specialized registers such as sp by convention will be discussed later in more
detail.

Control registers

(TBA)

Floating Point registers (RV32F)

(TBA)

Vector registers (RV32V)

(TBA)

Addressing

Addressing formats like %pcrel_lo(). We can just link to the RISC-V PS ABI
document to describe what the relocations actually do.

Instruction Set

Official Specifications webpage:

  • https://riscv.org/specifications/

Latest Specifications draft repository:

  • https://github.com/riscv/riscv-isa-manual

Instructions

RISC-V User Level ISA Specification

https://riscv.org/specifications/

RISC-V Privileged ISA Specification

https://riscv.org/specifications/privileged-isa/

Instruction Aliases

ALIAS line from opcodes/riscv-opc.c

To better diagnose situations where the program flow reaches an unexpected
location, you might want to emit there an instruction that’s known to trap. You
can use an UNIMP pseudo-instruction, which should trap in nearly all systems.
The de facto standard implementation of this instruction is:

  • C.UNIMP: 0000. The all-zeroes pattern is not a valid instruction. Any
    system which traps on invalid instructions will thus trap on this UNIMP
    instruction form. Despite not being a valid instruction, it still fits the
    16-bit (compressed) instruction format, and so 0000 0000 is interpreted as
    being two 16-bit UNIMP instructions.

  • UNIMP : C0001073. This is an alias for CSRRW x0, cycle, x0. Since
    cycle is a read-only CSR, then (whether this CSR exists or not) an attempt
    to write into it will generate an illegal instruction exception. This 32-bit
    form of UNIMP is emitted when targeting a system without the C extension,
    or when the .option norvc directive is used.

Pseudo Ops

Both the RISC-V-specific and GNU .-prefixed options.

The following table lists assembler directives:

DirectiveArgumentsDescription
.alignintegeralign to power of 2 (alias for .p2align)
.file“filename”emit filename FILE LOCAL symbol table
.globlsymbol_nameemit symbol_name to symbol table (scope GLOBAL)
.localsymbol_nameemit symbol_name to symbol table (scope LOCAL)
.commsymbol_name,size,alignemit common object to .bss section
.commonsymbol_name,size,alignemit common object to .bss section
.ident“string”accepted for source compatibility
.section[{.text,.data,.rodata,.bss}]emit section (if not present, default .text) and make current
.sizesymbol, symbolaccepted for source compatibility
.textemit .text section (if not present) and make current
.dataemit .data section (if not present) and make current
.rodataemit .rodata section (if not present) and make current
.bssemit .bss section (if not present) and make current
.string“string”emit string
.asciz“string”emit string (alias for .string)
.equname, valueconstant definition
.macroname arg1 [, argn]begin macro definition argname to substitute
.endmend macro definition
.typesymbol, @functionaccepted for source compatibility
.option{rvc,norvc,pic,nopic,push,pop}RISC-V options
.byteexpression [, expression]*8-bit comma separated words
.2byteexpression [, expression]*16-bit comma separated words
.halfexpression [, expression]*16-bit comma separated words
.shortexpression [, expression]*16-bit comma separated words
.4byteexpression [, expression]*32-bit comma separated words
.wordexpression [, expression]*32-bit comma separated words
.longexpression [, expression]*32-bit comma separated words
.8byteexpression [, expression]*64-bit comma separated words
.dwordexpression [, expression]*64-bit comma separated words
.quadexpression [, expression]*64-bit comma separated words
.dtprelwordexpression [, expression]*32-bit thread local word
.dtpreldwordexpression [, expression]*64-bit thread local word
.sleb128expressionsigned little endian base 128, DWARF
.uleb128expressionunsigned little endian base 128, DWARF
.p2alignp2,[pad_val=0],maxalign to power of 2
.balignb,[pad_val=0]byte align
.zerointegerzero bytes

Assembler Relocation Functions

The following table lists assembler relocation expansions:

Assembler NotationDescriptionInstruction / Macro
%hi(symbol)Absolute (HI20)lui
%lo(symbol)Absolute (LO12)load, store, add
%pcrel_hi(symbol)PC-relative (HI20)auipc
%pcrel_lo(label)PC-relative (LO12)load, store, add
%tprel_hi(symbol)TLS LE “Local Exec”lui
%tprel_lo(symbol)TLS LE “Local Exec”load, store, add
%tprel_add(symbol)TLS LE “Local Exec”add
%tls_ie_pcrel_hi(symbol) *TLS IE “Initial Exec” (HI20)auipc
%tls_gd_pcrel_hi(symbol) *TLS GD “Global Dynamic” (HI20)auipc
%got_pcrel_hi(symbol) *GOT PC-relative (HI20)auipc

* These reuse %pcrel_lo(label) for their lower half

Labels

Text labels are used as branch, unconditional jump targets and symbol offsets.
Text labels are added to the symbol table of the compiled module.

loop:
j loop

Numeric labels are used for local references. References to local labels are
suffixed with ‘f’ for a forward reference or ‘b’ for a backwards reference.

1:
j 1b

Absolute addressing

The following example shows how to load an absolute address:

.section .text
.globl _start
_start:
lui a0,
%hi(msg)
# load msg(hi)
addi a0, a0,
%lo(msg)
# load msg(lo)
jal ra, puts
2:
j 2b
.section .rodata
msg:
.string "Hello Worldn"

which generates the following assembler output and relocations
as seen by objdump:

0000000000000000 <_start>:
0:	000005b7
lui	a1,0x0
0: R_RISCV_HI20	msg
4:	00858593
addi	a1,a1,8 # 8 <.L21>
4: R_RISCV_LO12_I	msg

Relative addressing

The following example shows how to load a PC-relative address:

.section .text
.globl _start
_start:
1:
auipc a0,
%pcrel_hi(msg) # load msg(hi)
addi
a0, a0, %pcrel_lo(1b)
# load msg(lo)
jal ra, puts
2:
j 2b
.section .rodata
msg:
.string "Hello Worldn"

which generates the following assembler output and relocations
as seen by objdump:

0000000000000000 <_start>:
0:	00000597
auipc	a1,0x0
0: R_RISCV_PCREL_HI20	msg
4:	00858593
addi	a1,a1,8 # 8 <.L21>
4: R_RISCV_PCREL_LO12_I	.L11

GOT-indirect addressing

The following example shows how to load an address from the GOT:

.section .text
.globl _start
_start:
1:
auipc a0, %got_pcrel_hi(msg) # load msg(hi)
ld
a0, %pcrel_lo(1b)(a0)
# load msg(lo)
jal ra, puts
2:
j 2b
.section .rodata
msg:
.string "Hello Worldn"

which generates the following assembler output and relocations
as seen by objdump:

0000000000000000 <_start>:
0:	00000517
auipc	a0,0x0
0: R_RISCV_GOT_HI20	msg
4:	00053503
ld	a0,0(a0) # 0 <_start>
4: R_RISCV_PCREL_LO12_I	.L11

Load Immediate

The following example shows the li pseudo instruction which
is used to load immediate values:

.section .text
.globl _start
_start:
.equ CONSTANT, 0xcafebabe
li a0, CONSTANT

which generates the following assembler output as seen by objdump:

0000000000000000 <_start>:
0:	00032537
lui
a0,0x32
4:	bfb50513
addi	a0,a0,-1029
8:	00e51513
slli	a0,a0,0xe
c:	abe50513
addi	a0,a0,-1346

Load Address

The following example shows the la pseudo instruction which
is used to load symbol addresses:

.section .text
.globl _start
_start:
la a0, msg
.section .rodata
msg:
.string "Hello Worldn"

which generates the following assembler output and relocations
for non-PIC as seen by objdump:

0000000000000000 <_start>:
0:	00000517
auipc	a0,0x0
0: R_RISCV_PCREL_HI20	msg
4:	00850513
addi	a0,a0,8 # 8 <_start+0x8>
4: R_RISCV_PCREL_LO12_I	.L11

and generates the following assembler output and relocations
for PIC as seen by objdump:

0000000000000000 <_start>:
0:	00000517
auipc	a0,0x0
0: R_RISCV_GOT_HI20	msg
4:	00053503
ld	a0,0(a0) # 0 <_start>
4: R_RISCV_PCREL_LO12_I	.L0

Constants

The following example shows loading a constant using the %hi and
%lo assembler functions.

.equ UART_BASE, 0x40003000
lui a0,
%hi(UART_BASE)
addi a0, a0, %lo(UART_BASE)

This example uses the li pseudoinstruction to load a constant
and writes a string using polled IO to a UART:

.equ UART_BASE, 0x40003000
.equ REG_RBR, 0
.equ REG_TBR, 0
.equ REG_IIR, 2
.equ IIR_TX_RDY, 2
.equ IIR_RX_RDY, 4
.section .text
.globl _start
_start:
1:
auipc a0, %pcrel_hi(msg)
# load msg(hi)
addi a0, a0, %pcrel_lo(1b)
# load msg(lo)
2:
jal ra, puts
3:
j 3b
puts:
li a2, UART_BASE
1:
lbu a1, (a0)
beqz a1, 3f
2:
lbu a3, REG_IIR(a2)
andi a3, a3, IIR_TX_RDY
beqz a3, 2b
sb a1, REG_TBR(a2)
addi a0, a0, 1
j 1b
3:
ret
.section .rodata
msg:
.string "Hello Worldn"

Floating-point rounding modes

For floating-point instructions with a rounding mode field, the rounding mode
can be specified by adding an additional operand. e.g. fcvt.w.s with
round-to-zero can be written as fcvt.w.s a0, fa0, rtz. If unspecified, the
default dyn rounding mode will be used.

Supported rounding modes are as follows (must be specified in lowercase):

  • rne: round to nearest, ties to even
  • rtz: round towards zero
  • rdn: round down
  • rup: round up
  • rmm: round to nearest, ties to max magnitude
  • dyn: dynamic rounding mode (the rounding mode specified in the frm field
    of the fcsr register is used)

Control and Status Registers

The following code sample shows how to enable timer interrupts,
set and wait for a timer interrupt to occur:

.equ RTC_BASE,
0x40000000
.equ TIMER_BASE,
0x40004000
# setup machine trap vector
1:
auipc
t0, %pcrel_hi(mtvec)
# load mtvec(hi)
addi
t0, t0, %pcrel_lo(1b)
# load mtvec(lo)
csrrw
zero, mtvec, t0
# set mstatus.MIE=1 (enable M mode interrupt)
li
t0, 8
csrrs
zero, mstatus, t0
# set mie.MTIE=1 (enable M mode timer interrupts)
li
t0, 128
csrrs
zero, mie, t0
# read from mtime
li
a0, RTC_BASE
ld
a1, 0(a0)
# write to mtimecmp
li
a0, TIMER_BASE
li
t0, 1000000000
add
a1, a1, t0
sd
a1, 0(a0)
# loop
loop:
wfi
j loop
# break on interrupt
mtvec:
csrrc
t0, mcause, zero
bgez t0, fail
# interrupt causes are less than zero
slli t0, t0, 1
# shift off high bit
srli t0, t0, 1
li t1, 7
# check this is an m_timer interrupt
bne t0, t1, fail
j pass
pass:
la a0, pass_msg
jal puts
j shutdown
fail:
la a0, fail_msg
jal puts
j shutdown
.section .rodata
pass_msg:
.string "PASSn"
fail_msg:
.string "FAILn"

最后

以上就是优秀金针菇为你收集整理的RISC-V Assembly Programmer's ManualRISC-V Assembly Programmer’s ManualCopyright and License InformationCommand-Line ArgumentsRegistersAddressingInstruction SetRISC-V User Level ISA SpecificationRISC-V Privileged ISA Specification的全部内容,希望文章能够帮你解决RISC-V Assembly Programmer's ManualRISC-V Assembly Programmer’s ManualCopyright and License InformationCommand-Line ArgumentsRegistersAddressingInstruction SetRISC-V User Level ISA SpecificationRISC-V Privileged ISA Specification所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(49)

评论列表共有 0 条评论

立即
投稿
返回
顶部