概述
1.乘法
乘法:*、torch.mul、torch.mm、torch.matmul
https://blog.csdn.net/da_kao_la/article/details/87484403
2. 广播机制
pytorch中的广播机制和numpy中的广播机制一样, 因为都是数组的广播机制
两个维度不同的Tensor可以相乘, 示例
a = torch.arange(0,6).reshape((6,))
'''
tensor([0, 1, 2, 3, 4, 5])
shape: torch.Size([6])
ndim: 1
'''
b = torch.arange(0,12).reshape((2,6))
'''
tensor([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11]])
shape: torch.Size([2, 6])
ndim: 2
'''
# a和b的ndim不同, 但是可以element-wise相乘, 因为用到了广播机制
res = torch.mul(a,b)
'''
tensor([[ 0, 1, 4, 9, 16, 25],
[ 0, 7, 16, 27, 40, 55]])
shape: torch.Size([2, 6])
ndim: 2
'''
如何理解数组的广播机制
以数组A和数组B的相加为例, 其余数学运算同理
核心:如果相加的两个数组的shape不同, 就会触发广播机制, 1)程序会自动执行操作使得A.shape==B.shape, 2)对应位置进行相加
运算结果的shape是:A.shape和B.shape对应位置的最大值,比如:A.shape=(1,9,4),B.shape=(15,1,4),那么A+B的shape是(15,9,4)
有两种情况能够进行广播
1.A.ndim > B.ndim, 并且A.shape最后几个元素包含B.shape, 比如下面三种情况, 注意不要混淆ndim和shape这两个基本概念
- A.shape=(2,3,4,5), B.shape=(3,4,5)
- A.shape=(2,3,4,5), B.shape=(4,5)
- A.shape=(2,3,4,5), B.shape=(5)
2.A.ndim == B.ndim, 并且A.shape和B.shape对应位置的元素要么相同要么其中一个是1, 比如
- A.shape=(1,9,4), B.shape=(15,1,4)
- A.shape=(1,9,4), B.shape=(15,1,1)
下面分别进行举例
A.ndim 大于 B.ndim
# a.shape=(2,2,3,4)
a = np.arange(1,49).reshape((2,2,3,4))
# b.shape=(3,4)
b = np.arange(1,13).reshape((3,4))
# numpy会将b.shape调整至(2,2,3,4), 这一步相当于numpy自动实现np.tile(b,[2,2,1,1])
res = a + b
print('===================================')
print(a)
print(a.shape)
print('===================================')
print(b)
print(b.shape)
print('===================================')
print(res)
print(res.shape)
print('===================================')
print(a+b == a + np.tile(b,[2,2,1,1]) )
A.ndim 等于 B.ndim
#示例1
# a.shape=(4,3)
a = np.arange(12).reshape(4,3)
# b.shape=(4,1)
b = np.arange(4).reshape(4,1)
# numpy会将b.shape调整至(4,3), 这一步相当于numpy自动实现np.tile(b,[1,3])
res = a + b
print('===================================')
print(a)
print(a.shape)
print('===================================')
print(b)
print(b.shape)
print('===================================')
print(res)
print(res.shape)
print('===================================')
print((a+b == a + np.tile(b,[1,3])) ) # 打印结果都是True
#示例2
# a.shape=(1,9,4)
a = np.arange(1,37).reshape((1,9,4))
# b.shape=(15,1,4)
b = np.arange(1,61).reshape((15,1,4))
res = a + b
print('===================================')
# print(a)
print(a.shape)
print('===================================')
# print(b)
print(b.shape)
print('===================================')
# print(res)
print(res.shape)
print('===================================')
q = np.tile(a,[15,1,1]) + np.tile(b,[1,9,1])
print(q == res) # 打印结果都是True
最后
以上就是优秀音响为你收集整理的pytorch乘法以及广播机制1.乘法2. 广播机制的全部内容,希望文章能够帮你解决pytorch乘法以及广播机制1.乘法2. 广播机制所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复