概述
Ť题意:判断一个区间中有多少个数是二进制时是循环的,比如101010,以10为循环。
思路:以位数来处理,i是处理到当前长度i,j是循环体的长度,当i<len【二进制的长度】时只要i%j==0则长度为j时的全部数都可以,当i==len时要特殊处理到最大的循环,还有去重,因为循环体j的长度为4时已经包含了长度1【1111】,2【1010】【1111】
#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
#define ll long long
int a[100];ll dp[100];
ll cal(int len,int j,ll o)
{
ll c=0,b=1;
for(int i=1;i<=j;i++)
{
c+=(a[len-i+1]<<(j-i));//n值的前j位以他当作最大的循环体,比这个循环体小的都可以
}
b=c;
for(int i=1;i<=len/j-1;i++)//以这个循环体求得len长度的值(用来比较和n的大小
b<<=j,b+=c;
ll sum=1<<(j-1);
return c-sum+(b<=o);//c-sum就是比循环体小的个数
}
ll solve(ll w)
{
int len=0;
ll ww=w;
ll ans=0;
while(w)
{
a[++len]=w%2;
w/=2;
}
for(int i=2;i<=len;i++)
{
memset(dp,0,sizeof(dp));
for(int j=1;j<=i/2;j++)
{
if(i%j!=0) continue;
if(i<len)//i<len//全都可以
dp[j]+=(1<<(j-1));
else
dp[j]+=cal(len,j,ww);//处理到最大
for(int k=1;k<j;k++)
{
if(j%k==0)
dp[j]-=dp[k];//去重
}
ans+=dp[j];
}
}
return ans;
}
int main()
{
ll n,m;
cin>>n>>m;
printf("%lldn",solve(m)-solve(n-1));
return 0;
}
最后
以上就是幽默苗条为你收集整理的CodeForces - 215E 【数位dp】的全部内容,希望文章能够帮你解决CodeForces - 215E 【数位dp】所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复