POJ3518http://poj.org/problem?id=3518
Description
The sequence of n − 1 consecutive composite numbers (positive integers that are not prime and not equal to 1) lying between two successive prime numbers p and p + n is called a prime gap of length n. For example, ‹24, 25, 26, 27, 28› between 23 and 29 is a prime gap of length 6.
Your mission is to write a program to calculate, for a given positive integer k, the length of the prime gap that contains k. For convenience, the length is considered 0 in case no prime gap contains k.
Input
The input is a sequence of lines each of which contains a single positive integer. Each positive integer is greater than 1 and less than or equal to the 100000th prime number, which is 1299709. The end of the input is indicated by a line containing a single zero.
Output
The output should be composed of lines each of which contains a single non-negative integer. It is the length of the prime gap that contains the corresponding positive integer in the input if it is a composite number, or 0 otherwise. No other characters should occur in the output.
Sample Input
1
2
3
4
5
610 11 27 2 492170 0
Sample Output
1
2
3
4
54 0 6 0 114
Source Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43#include<iostream> #include<cstring> #define N 5000005 #define ll long long using namespace std; ll n; ll primes[N]; ll cnt; bool prime[N]; void make_prime() { memset(prime,true,sizeof(prime)); prime[0]=false; prime[1]=false; for(ll i=2;i<=N;i++) { if(prime[i]) { primes[cnt++]=i; for(ll k=i*i;k<=N;k+=i) prime[k]=false; } } } int main() { make_prime();//打表 while(cin>>n&&n) { if(prime[n])//本身是素数,长度为0 cout<<0<<endl; else { for(ll i=0;i<cnt;i++) { if(primes[i]<n&&primes[i+1]>n) cout<<primes[i+1]-primes[i]<<endl;//找到n两边的素数,相减得长度 } } } return 0; }
最后
以上就是大胆爆米花最近收集整理的关于Problem P:Prime Gap(素数打表)的全部内容,更多相关Problem内容请搜索靠谱客的其他文章。
发表评论 取消回复