我是靠谱客的博主 隐形柜子,这篇文章主要介绍Sum of Consecutive Prime Numbers,现在分享给大家,希望可以做个参考。

题目描述

Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53 . The integer 41 has three representations 2 + 3 + 5 + 7 + 11 + 13 , 11 + 13 + 17 , and 41 . The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20. Your mission is to write a program that reports the number of representations for the given positive integer. 

输入

The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10000, inclusive. The end of the input is indicated by a zero. 

输出

The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output. 

样例输入

复制代码
1
2
3
4
5
6
7
8
9
2 3 17 41 20 666 12 53 0

样例输出

复制代码
1
2
3
4
5
6
7
8
1 1 2 3 0 0 1 2
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#include<iostream> #include<cmath> using namespace std; int n,m; int a[10005]={0}; bool isp(int x) { if(x<2) return 0; for(int i=2; i<=sqrt(x); i++) { if(x%i==0) return 0; } return 1; } int main() { int cnt=0; for(int i=1; i<10005; i++) { if(isp(i)) a[cnt++]=i; } while(cin>>n&&n) { int l=0,r=0,sum=0,cnt=0; while(1) { while(a[r]<=n&&sum<=n) { sum+=a[r++]; if(sum==n) cnt++; } if(sum<=n) break; sum-=a[l++]; if(sum==n) cnt++; } cout<<cnt<<endl; } return 0; }

最后

以上就是隐形柜子最近收集整理的关于Sum of Consecutive Prime Numbers的全部内容,更多相关Sum内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(69)

评论列表共有 0 条评论

立即
投稿
返回
顶部