概述
请留言,说出你的解题思路和答案。稍后,我会把参考答案发到留言区。不定期整理相关的问题答案分享。
1、下列矩阵的秩是()
A = [ 2 1 8 3 7 2 − 3 0 7 − 5 3 − 2 5 8 0 1 0 3 2 0 ] A = begin{bmatrix} 2&1&8&3&7\ 2&-3&0&7&-5\ 3&-2&5&8&0\ 1&0&3&2&0\ end{bmatrix} A=⎣⎢⎢⎡22311−3−20805337827−500⎦⎥⎥⎤
- A. 4
- B. 3
- C. 2
- D. 1
2、下列矩阵的先导列为()
A = [ 0 0 0 1 1 1 0 0 1 1 2 3 ] A=begin{bmatrix}0&0&0&1\1&1&0&0\1&1&2&3end{bmatrix} A=⎣⎡011011002103⎦⎤
- A. 第1列,第4列
- B. 第3列、第4列
- C. 第1列、第3列、第4列
- D. 第1列,第2列、第3列
3、若以 ( A m × n , b ) (A_{mtimes n},b) (Am×n,b)为增广矩阵的线性方程组有解,且 R ( A ) = r R(A)=r R(A)=r,则当 r r r满足()时,方程组有唯一解。
- A. r = n r = n r=n
- B. r < n r < n r<n
- C. r = m r = m r=m
- D. r < m r < m r<m
4、已知方程组无解,则 a a a满足()。
{ x 1 + 2 x 2 + x 3 = 1 2 x 1 + 3 x 2 + ( a + 2 ) x 3 = 3 x 1 + a x 2 − 2 x 3 = 0 left { begin{array}{c} x_1 + 2x_2 + x_3 = 1 \ 2x_1 + 3x_2 + (a+2)x_3 = 3\ x_1 + ax_2 - 2x_3 = 0\ end{array} right. ⎩⎨⎧x1+2x2+x3=12x1+3x2+(a+2)x3=3x1+ax2−2x3=0
- A. a = 3 a = 3 a=3
- B. a = − 1 a = -1 a=−1
- C. a = − 1 a = -1 a=−1 或 a = 3 a = 3 a=3
- D. a ≠ 3 a neq 3 a=3
5、如果非齐次线性方程组中方程个数小于未知数个数,那么()
- A. 方程组必有无穷多解
- B. 相应的齐次线性方程组必有非零解
- C. 相应的齐次线性方程组仅有零解
- D. 相应的齐次线性方程组一定无解
最后
以上就是朴实小蚂蚁为你收集整理的【数学基础】校招算法工程师笔试题的全部内容,希望文章能够帮你解决【数学基础】校招算法工程师笔试题所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复