概述
Mooplab(新网银行杯)
一、pycharm第三方库安装不上的问题(2020.10.19-10.21)
相关方法:
- 在终端上安装包
- win+R
- 输入cmd进入终端
- pip install (numpy)‘要装的安装包’ -i https://pypi.tuna.tsinghua.edu.cn/simple some-package
- 更新pip:终端输入python -m pip install --upgrade pip
- PyCharm安装教程(Windows):https://www.runoob.com/w3cnote/pycharm-windows-install.html
二、‘mbcs’ codec can’t encode characters in position 0–1: invalid character 问题(2020.10.22)
方法:
-
原因:路径问题,将字符串作为路径直接使用,需要转义
出错代码:pd.read_csv(‘duringopereationpatientspatients_csv23483949.csv’, encoding = “gb2312”)
修改代码:pd.read_csv(‘duringopereationpatientspatients_csv23483949.csv’, encoding = “gb2312”)
-
将路径删掉重新手敲一遍解决(之前是文件属性里复制的路径)
解决方案:
- 用第二个方案解决
三、KNN&SVM(分类方法) (2020.10.22)
import pandas as pd
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
# 读取数据
dfx_train = pd.read_csv(r"E:/新网银行杯/data_b_train.csv")
dfx_test = pd.read_csv(r"E:/新网银行杯/data_b_test.csv")
dfy_train = pd.read_csv(r"E:/新网银行杯/y_train.csv")
print(dfx_train)
# 字典中的key转换为列表
key_value = list(dfx_train.keys())
print('字典中的key转换为列表:', key_value)
x1_train = np.array(list(dfx_train['x_num_0']))
# x2_train = np.array(list(dfx_train['x_num_1']))
x3_train = np.array(list(dfx_train['x_num_2']))
# x4_train = np.array(list(dfx_train['x_num_3']))
# x5_train = np.array(list(dfx_train['x_num_4']))
# x6_train = np.array(list(dfx_train['x_num_5']))
# x7_train = np.array(list(dfx_train['x_num_6']))
# x8_train = np.array(list(dfx_train['x_num_7']))
x_train=np.array([x1_train,x3_train])
x_train=x_train.T
y_train = np.array(list(dfy_train['target']))
y_train=y_train.T
#
x1_test = np.array(list(dfx_test['x_num_0']))
# x2_test = np.array(list(dfx_test['x_num_1']))
x3_test = np.array(list(dfx_test['x_num_2']))
# x4_test = np.array(list(dfx_test['x_num_3']))
# x5_test = np.array(list(dfx_test['x_num_4']))
x_test=np.array([x1_test,x3_test])
x_test=x_test.T
#==================================
# KNN
#==================================
knn = KNeighborsClassifier()
knn.fit(x_train,y_train)
y_test=knn.predict(x_test)
print(len(y_test))
#==================================
# SVM
#==================================
# from sklearn.svm import SVC
# model = SVC(kernel='rbf', probability=True)#probability=False时,没办法调用 model.predict_proba()函数
# model.fit(x_train,y_train)
# pre = model.predict_proba(C)
# print(pre)
# y_test = model.predict(x_test)
# print(y_test)
#==================================
# 导出
#==================================
data_df = pd.DataFrame(y_test)
# change the index and column name
data_df.columns = ['target']
data_df.index = list(range(0,5767))
# create and writer pd.DataFrame to excel
writer = pd.ExcelWriter('E:/新网银行杯/y_test.xlsx')
data_df.to_excel(writer,'page_1',float_format='%.5f') # float_format 控制精度
writer.save()
四、随机生成数(2020.10.22)
import numpy as np
import pandas as pd
import random
a=[]
for i in range(1,5767):
a.append(random.randint(0,1))
a = np.array(a)
# prepare for data
data = a.reshape((5766,1))
print(data)
data_df = pd.DataFrame(data)
# change the index and column name
data_df.columns = ['target']
data_df.index = list(range(1,5767))
# create and writer pd.DataFrame to excel
writer = pd.ExcelWriter('Save_Excel.xlsx')
data_df.to_excel(writer,'page_1',float_format='%.5f') # float_format 控制精度
writer.save()
五、基础理论(2020.10.23)
建模
- read读数据 (读入scv.文件)
- operation 操作(pre-processing [用pandas])
- modeling建模
- result得出结果
- write写论文
六、第二次开会(2020.10.23)
任务:
- 数据预处理(-99用取均值的方法)
- 感知机分类
- 筛选数据(可手动删除部分信息)
- 行为信息数据(给时间点加权)
#pnn感知器分类
from sklearn.linear_model import Perceptron
ppn = Perceptron()
ppn.fit(x_train, y_train)
y_test = ppn.predict(x_test)
学习目标:
python:
- 语法
- numpy
- pandas
最后
以上就是悲凉苗条为你收集整理的Mooplab(新网银行杯)Mooplab(新网银行杯)的全部内容,希望文章能够帮你解决Mooplab(新网银行杯)Mooplab(新网银行杯)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复