概述
学过线性代数的都了解矩阵,在矩阵上的文章可做的很多,什么特征矩阵,单位矩阵等.grpah存储可以使用矩阵,比如graph的邻接矩阵
,权重矩阵
等,这节主要是在等到graph后,如何快速得到这些信息.详细官方文档在这里
目录:
- 10线性代数相关
- 10.1图矩阵
注意:如果代码出现找不库,请返回第一个教程,把库文件导入.
10线性代数相关
10.1图矩阵
- #定义图的节点和边
- nodes=['0','1','2','3','4','5','a','b','c']
- edges=[('0','0',1),('0','1',1),('0','5',1),('0','5',2),('1','2',3),('1','4',5),('2','1',7),('2','4',6),('a','b',0.5),('b','c',0.5),('c','a',0.5)]
-
- plt.subplots(1,2,figsize=(10,3))
-
- #定义一个无向图和有向图
- G1 = nx.Graph()
- G1.add_nodes_from(nodes)
- G1.add_weighted_edges_from(edges)
-
- G2 = nx.DiGraph()
- G2.add_nodes_from(nodes)
- G2.add_weighted_edges_from(edges)
-
- pos1=nx.circular_layout(G1)
- pos2=nx.circular_layout(G2)
-
- #画出无向图和有向图
- plt.subplot(121)
- nx.draw(G1,pos1, with_labels=True, font_weight='bold')
- plt.title('无向图',fontproperties=myfont)
- plt.axis('on')
- plt.xticks([])
- plt.yticks([])
-
- plt.subplot(122)
- nx.draw(G2,pos2, with_labels=True, font_weight='bold')
- plt.title('有向图',fontproperties=myfont)
- plt.axis('on')
- plt.xticks([])
- plt.yticks([])
-
- plt.show()
-
- #控制numpy输出小数位数
- import numpy as np
- np.set_printoptions(precision=3)
-
- #邻接矩阵
- A = nx.adjacency_matrix(G1)
- print('邻接矩阵:n',A.todense())
-
- #关联矩阵
- I = nx.incidence_matrix(G1)
- print('n关联矩阵:n',I.todense())
-
- #拉普拉斯矩阵
- L=nx.laplacian_matrix(G1)
- print('n拉普拉斯矩阵:n',L.todense())
-
- #标准化的拉普拉斯矩阵
- NL=nx.normalized_laplacian_matrix(G1)
- print('n标准化的拉普拉斯矩阵:n',NL.todense())
-
- #有向图拉普拉斯矩阵
- DL=nx.directed_laplacian_matrix(G2)
- print('n有向拉普拉斯矩阵:n',DL)
-
- #拉普拉斯算子的特征值
- LS=nx.laplacian_spectrum(G1)
- print('n拉普拉斯算子的特征值:n',LS)
-
- #邻接矩阵的特征值
- AS=nx.adjacency_spectrum(G1)
- print('n邻接矩阵的特征值:n',AS)
-
- #无向图的代数连通性
- AC=nx.algebraic_connectivity(G1)
- print('n无向图的代数连通性:n',AC)
-
- #图的光谱排序
- SO=nx.spectral_ordering(G1)
- print('n图的光谱排序:n',SO)
-
- #两个矩阵的解释看:https://blog.csdn.net/Hanging_Gardens/article/details/55670356
输出:
- 邻接矩阵:
- [[0. 0. 0. 0. 5. 0. 0. 0. 6. ]
- [0. 0. 0. 2. 0. 0. 0. 0. 0. ]
- [0. 0. 0. 0. 0. 0.5 0.5 0. 0. ]
- [0. 2. 0. 1. 1. 0. 0. 0. 0. ]
- [5. 0. 0. 1. 0. 0. 0. 0. 7. ]
- [0. 0. 0.5 0. 0. 0. 0.5 0. 0. ]
- [0. 0. 0.5 0. 0. 0.5 0. 0. 0. ]
- [0. 0. 0. 0. 0. 0. 0. 0. 0. ]
- [6. 0. 0. 0. 7. 0. 0. 0. 0. ]]
-
- 关联矩阵:
- [[1. 1. 0. 0. 0. 0. 0. 0. 0.]
- [0. 0. 1. 0. 0. 0. 0. 0. 0.]
- [0. 0. 0. 1. 1. 0. 0. 0. 0.]
- [0. 0. 1. 0. 0. 1. 0. 0. 0.]
- [0. 1. 0. 0. 0. 1. 0. 1. 0.]
- [0. 0. 0. 1. 0. 0. 0. 0. 1.]
- [0. 0. 0. 0. 1. 0. 0. 0. 1.]
- [0. 0. 0. 0. 0. 0. 0. 0. 0.]
- [1. 0. 0. 0. 0. 0. 0. 1. 0.]]
-
- 拉普拉斯矩阵:
- [[11. 0. 0. 0. -5. 0. 0. 0. -6. ]
- [ 0. 2. 0. -2. 0. 0. 0. 0. 0. ]
- [ 0. 0. 1. 0. 0. -0.5 -0.5 0. 0. ]
- [ 0. -2. 0. 3. -1. 0. 0. 0. 0. ]
- [-5. 0. 0. -1. 13. 0. 0. 0. -7. ]
- [ 0. 0. -0.5 0. 0. 1. -0.5 0. 0. ]
- [ 0. 0. -0.5 0. 0. -0.5 1. 0. 0. ]
- [ 0. 0. 0. 0. 0. 0. 0. 0. 0. ]
- [-6. 0. 0. 0. -7. 0. 0. 0. 13. ]]
-
- 标准化的拉普拉斯矩阵:
- [[ 1. 0. 0. 0. -0.418 0. 0. 0. -0.502]
- [ 0. 1. 0. -0.707 0. 0. 0. 0. 0. ]
- [ 0. 0. 1. 0. 0. -0.5 -0.5 0. 0. ]
- [ 0. -0.707 0. 0.75 -0.139 0. 0. 0. 0. ]
- [-0.418 0. 0. -0.139 1. 0. 0. 0. -0.538]
- [ 0. 0. -0.5 0. 0. 1. -0.5 0. 0. ]
- [ 0. 0. -0.5 0. 0. -0.5 1. 0. 0. ]
- [ 0. 0. 0. 0. 0. 0. 0. 0. 0. ]
- [-0.502 0. 0. 0. -0.538 0. 0. 0. 1. ]]
-
- 有向拉普拉斯矩阵:
- [[ 0.889 -0.117 -0.029 -0.087 -0.319 -0.029 -0.029 -0.129 -0.242]
- [-0.117 0.889 -0.026 -0.278 -0.051 -0.026 -0.026 -0.114 -0.056]
- [-0.029 -0.026 0.994 -0.012 -0.009 -0.481 -0.481 -0.025 -0.01 ]
- [-0.087 -0.278 -0.012 0.757 -0.097 -0.012 -0.012 -0.052 -0.006]
- [-0.319 -0.051 -0.009 -0.097 0.994 -0.009 -0.009 -0.041 -0.434]
- [-0.029 -0.026 -0.481 -0.012 -0.009 0.994 -0.481 -0.025 -0.01 ]
- [-0.029 -0.026 -0.481 -0.012 -0.009 -0.481 0.994 -0.025 -0.01 ]
- [-0.129 -0.114 -0.025 -0.052 -0.041 -0.025 -0.025 0.889 -0.045]
- [-0.242 -0.056 -0.01 -0.006 -0.434 -0.01 -0.01 -0.045 0.994]]
-
- 拉普拉斯算子的特征值:
- [-1.436e-15 0.000e+00 4.610e-16 7.000e-01 1.500e+00 1.500e+00
- 4.576e+00 1.660e+01 2.013e+01]
-
- 邻接矩阵的特征值:
- [12.068+0.000e+00j 2.588+0.000e+00j -7.219+0.000e+00j -4.925+0.000e+00j
- -1.513+0.000e+00j 1. +0.000e+00j -0.5 +2.393e-17j -0.5 -2.393e-17j
- 0. +0.000e+00j]
-
- 无向图的代数连通性:
- 0.0
-
- 图的光谱排序:
- ['4', '2', '1', '0', '5', 'b', 'c', 'a', '3']
后面还有两个小节,由于对图论算法不是很明白,所以先讲明白算法原理,再使用networkX实现,如无须读算法,可以跳过算法原理部分.
转载于:https://www.cnblogs.com/wushaogui/p/9206264.html
最后
以上就是繁荣棒球为你收集整理的NetworkX系列教程(9)-线性代数相关10线性代数相关的全部内容,希望文章能够帮你解决NetworkX系列教程(9)-线性代数相关10线性代数相关所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复