我是靠谱客的博主 会撒娇草丛,最近开发中收集的这篇文章主要介绍SSD: Single Shot MultiBox Detector布置安装与测试[亲测],觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

原文链接:https://github.com/weiliu89/caffe/tree/ssd

亲测提示:./data/VOC0712/create_data.sh如果出现错误:no caffe.proto,则需要添加Python环境变量。

以下为原文:

 

Introduction

 

SSD is an unified framework for object detection with a single network. You can use the code to train/evaluate a network for object detection task. For more details, please refer to ourarXiv paper and ourslide.

Contents

  1. Installation
  2. Preparation
  3. Train/Eval
  4. Models

Installation

  1. Get the code. We will call the directory that you cloned Caffe into $CAFFE_ROOT

    git clone https://github.com/weiliu89/caffe.git
    cd caffe
    git checkout ssd
  2. Build the code. Please follow Caffe instruction to install all necessary packages and build it.

    # Modify Makefile.config according to your Caffe installation.
    cp Makefile.config.example Makefile.config
    make -j8
    # Make sure to include $CAFFE_ROOT/python to your PYTHONPATH.
    make py
    make test -j8
    # (Optional)
    make runtest -j8

Preparation

  1. Download fully convolutional reduced (atrous) VGGNet. By default, we assume the model is stored in$CAFFE_ROOT/models/VGGNet/

  2. Download VOC2007 and VOC2012 dataset. By default, we assume the data is stored in$HOME/data/

    # Download the data.
    cd $HOME/data
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
    # Extract the data.
    tar -xvf VOCtrainval_11-May-2012.tar
    tar -xvf VOCtrainval_06-Nov-2007.tar
    tar -xvf VOCtest_06-Nov-2007.tar
  3. Create the LMDB file.

    cd $CAFFE_ROOT
    # Create the trainval.txt, test.txt, and test_name_size.txt in data/VOC0712/
    ./data/VOC0712/create_list.sh
    # You can modify the parameters in create_data.sh if needed.
    # It will create lmdb files for trainval and test with encoded original image:
    #   - $HOME/data/VOCdevkit/VOC0712/lmdb/VOC0712_trainval_lmdb
    #   - $HOME/data/VOCdevkit/VOC0712/lmdb/VOC0712_test_lmdb
    # and make soft links at examples/VOC0712/
    ./data/VOC0712/create_data.sh

这里用的脚本实现批处理,可能会出现错误:no module named caffe或者no module named caffe-proto,那是caffe的Python环境变量未配置

sudo gedit  /etc/profile
在最后添加  export PYTHONPATH=$PYTHONPATH:/home/**(您服务器的名字)/caffe/pyhon
保存退出
source ~/.profile
echo $PYTHONPATH #检查环境变量的值

Train/Eval

  1. Train your model and evaluate the model on the fly.

    # It will create model definition files and save snapshot models in:
    #   - $CAFFE_ROOT/models/VGGNet/VOC0712/SSD_300x300/
    # and job file, log file, and the python script in:
    #   - $CAFFE_ROOT/jobs/VGGNet/VOC0712/SSD_300x300/
    # and save temporary evaluation results in:
    #   - $HOME/data/VOCdevkit/results/VOC2007/SSD_300x300/
    # It should reach 77.* mAP at 120k iterations.
    python examples/ssd/ssd_pascal.py

    If you don't have time to train your model, you can download a pre-trained model athere.

  2. Evaluate the most recent snapshot.

    # If you would like to test a model you trained, you can do:
    python examples/ssd/score_ssd_pascal.py
  3. Test your model using a webcam. Note: press esc to stop.

    # If you would like to attach a webcam to a model you trained, you can do:
    python examples/ssd/ssd_pascal_webcam.py

    Here is a demo video of running a SSD500 model trained onMSCOCO dataset.

  4. Check out examples/ssd_detect.ipynb or examples/ssd/ssd_detect.cpp on how to detect objects using a SSD model. Check outexamples/ssd/plot_detections.py on how to plot detection results output by ssd_detect.cpp.

  5. To train on other dataset, please refer to data/OTHERDATASET for more details. We currently add support for COCO and ILSVRC2016. We recommend usingexamples/ssd.ipynb to check whether the new dataset is prepared correctly.

Models

We have provided the latest models that are trained from different datasets. To help reproduce the results inTable 6, most models contain a pretrained.caffemodel file, many .prototxt files, and python scripts.

  1. PASCAL VOC models:

    • 07+12: SSD300*, SSD512*
    • 07++12: SSD300*, SSD512*
    • COCO[1]: SSD300*, SSD512*
    • 07+12+COCO: SSD300*, SSD512*
    • 07++12+COCO: SSD300*, SSD512*
  2. COCO models:

    • trainval35k: SSD300*, SSD512*
  3. ILSVRC models:

    • trainval1: SSD300*, SSD500

[1]We use examples/convert_model.ipynb to extract a VOC model from a pretrained COCO model.

 

最后

以上就是会撒娇草丛为你收集整理的SSD: Single Shot MultiBox Detector布置安装与测试[亲测]的全部内容,希望文章能够帮你解决SSD: Single Shot MultiBox Detector布置安装与测试[亲测]所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(39)

评论列表共有 0 条评论

立即
投稿
返回
顶部