我是靠谱客的博主 刻苦咖啡豆,最近开发中收集的这篇文章主要介绍hive join,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

语法

join_table:

    table_reference JOIN table_factor [join_condition]

  | table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference join_condition

  | table_reference LEFT SEMI JOIN  table_reference join_condition

 

table_reference:

    table_factor

  | join_table

 

table_factor:

    tbl_name [alias]

  | table_subquery alias

  | ( table_references )

 

join_condition:

    ON equality_expression ( AND equality_expression )*

 

equality_expression:

    expression = expression

Hive 只支持等值连接(equality joins)、外连接(outer joins)和(left/right joins)。Hive 不支持所有非等值的连接,因为非等值连接非常难转化到 map/reduce 任务。另外,Hive 支持多于 2 个表的连接。

写 join 查询时,需要注意几个关键点:

1、只支持等值join

例如:

  SELECT a.* FROM a JOIN b ON (a.id = b.id)

  SELECT a.* FROM a JOIN b
    ON (a.id = b.id AND a.department = b.department)

是正确的,然而:

  SELECT a.* FROM a JOIN b ON (a.id  b.id)

是错误的。

 

  1. 可以 join 多于 2 个表。

例如

  SELECT a.val, b.val, c.val FROM a JOIN b

    ON (a.key = b.key1) JOIN c ON (c.key = b.key2)

如果join中多个表的 join key 是同一个,则 join 会被转化为单个 map/reduce 任务,例如:

  SELECT a.val, b.val, c.val FROM a JOIN b

    ON (a.key = b.key1) JOIN c

    ON (c.key = b.key1)

被转化为单个 map/reduce 任务,因为 join 中只使用了 b.key1 作为 join key。

SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1)

  JOIN c ON (c.key = b.key2)

而这一 join 被转化为 2 个 map/reduce 任务。因为 b.key1 用于第一次 join 条件,而 b.key2 用于第二次 join。

  

3.join 时,每次 map/reduce 任务的逻辑:

    reducer 会缓存 join 序列中除了最后一个表的所有表的记录,再通过最后一个表将结果序列化到文件系统。这一实现有助于在 reduce 端减少内存的使用量。实践中,应该把最大的那个表写在最后(否则会因为缓存浪费大量内存)。例如:

 SELECT a.val, b.val, c.val FROM a

    JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)

所有表都使用同一个 join key(使用 1 次 map/reduce 任务计算)。Reduce 端会缓存 a 表和 b 表的记录,然后每次取得一个 c 表的记录就计算一次 join 结果,类似的还有:

  SELECT a.val, b.val, c.val FROM a

    JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)

这里用了 2 次 map/reduce 任务。第一次缓存 a 表,用 b 表序列化;第二次缓存第一次 map/reduce 任务的结果,然后用 c 表序列化。

 

4.LEFT,RIGHT 和 FULL OUTER 关键字用于处理 join 中空记录的情况。

例如:

  SELECT a.val, b.val FROM a LEFT OUTER

    JOIN b ON (a.key=b.key)

对应所有 a 表中的记录都有一条记录输出。输出的结果应该是 a.val, b.val,当 a.key=b.key 时,而当 b.key 中找不到等值的 a.key 记录时也会输出 a.val, NULL。“FROM a LEFT OUTER JOIN b”这句一定要写在同一行——意思是 a 表在 b 表的左边,所以 a 表中的所有记录都被保留了;“a RIGHT OUTER JOIN b”会保留所有 b 表的记录。OUTER JOIN 语义应该是遵循标准 SQL spec的。

Join 发生在 WHERE 子句之前。如果你想限制 join 的输出,应该在 WHERE 子句中写过滤条件——或是在 join 子句中写。这里面一个容易混淆的问题是表分区的情况:

  SELECT a.val, b.val FROM a

  LEFT OUTER JOIN b ON (a.key=b.key)

  WHERE a.ds='2009-07-07' AND b.ds='2009-07-07'

会 join a 表到 b 表(OUTER JOIN),列出 a.val 和 b.val 的记录。WHERE 从句中可以使用其他列作为过滤条件。但是,如前所述,如果 b 表中找不到对应 a 表的记录,b 表的所有列都会列出 NULL,包括 ds 列。也就是说,join 会过滤 b 表中不能找到匹配 a 表 join key 的所有记录。这样的话,LEFT OUTER 就使得查询结果与 WHERE 子句无关了。解决的办法是在 OUTER JOIN 时使用以下语法:

  SELECT a.val, b.val FROM a LEFT OUTER JOIN b

  ON (a.key=b.key AND

      b.ds='2009-07-07' AND

      a.ds='2009-07-07')

这一查询的结果是预先在 join 阶段过滤过的,所以不会存在上述问题。这一逻辑也可以应用于 RIGHT 和 FULL 类型的 join 中。

Join 是不能交换位置的。无论是 LEFT 还是 RIGHT join,都是左连接的。

  SELECT a.val1, a.val2, b.val, c.val

  FROM a

  JOIN b ON (a.key = b.key)

  LEFT OUTER JOIN c ON (a.key = c.key)

先 join a 表到 b 表,丢弃掉所有 join key 中不匹配的记录,然后用这一中间结果和 c 表做 join。这一表述有一个不太明显的问题,就是当一个 key 在 a 表和 c 表都存在,但是 b 表中不存在的时候:整个记录在第一次 join,即 a JOIN b 的时候都被丢掉了(包括a.val1,a.val2和a.key),然后我们再和 c 表 join 的时候,如果 c.key 与 a.key 或 b.key 相等,就会得到这样的结果:NULL, NULL, NULL, c.val。

 

5.LEFT SEMI JOIN  是 IN/EXISTS 子查询的一种更高效的实现。Hive 当前没有实现 IN/EXISTS 子查询,所以你可以用 LEFT SEMI JOIN 重写你的子查询语句。LEFT SEMI JOIN 的限制是, JOIN 子句中右边的表只能在 ON 子句中设置过滤条件,在 WHERE 子句、SELECT 子句或其他地方过滤都不行。

  SELECT a.key, a.value

  FROM a

  WHERE a.key in

   (SELECT b.key

    FROM B);

可以被重写为:

   SELECT a.key, a.val

   FROM a LEFT SEMI JOIN b on (a.key = b.key)

转载于:https://www.cnblogs.com/mapr-hadoop/p/3382589.html

最后

以上就是刻苦咖啡豆为你收集整理的hive join的全部内容,希望文章能够帮你解决hive join所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(53)

评论列表共有 0 条评论

立即
投稿
返回
顶部