我是靠谱客的博主 殷勤冷风,最近开发中收集的这篇文章主要介绍redis缓存篇知识点总结,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

1.缓存雪崩
当大量缓存数据在同一时间过期(失效)或者 Redis 故障宕机时,如果此时有大量的用户请求,都无法在 Redis 中处理,于是全部请求都直接访问数据库,从而导致数据库的压力骤增,严重的会造成数据库宕机,从而形成一系列连锁反应,造成整个系统崩溃

发生缓存雪崩有两个原因:

大量数据同时过期;
Redis 故障宕机;

大量数据同时过期应对方法:

均匀设置过期时间;
互斥锁;
双 key 策略;
后台更新缓存

均匀设置过期时间:
避免将大量的数据设置成同一个过期时间,在对缓存数据设置过期时间时,给这些数据的过期时间加上一个随机数,这样就保证数据不会在同一时间过期

双 key 策略:
我们对缓存数据可以使用两个 key,一个是主 key,会设置过期时间,一个是备 key,不会设置过期,它们只是 key 不一样,但是 value 值是一样的,相当于给缓存数据做了个副本。

当业务线程访问不到「主 key 」的缓存数据时,就直接返回「备 key 」的缓存数据,然后在更新缓存的时候,同时更新「主 key 」和「备 key 」的数据

互斥锁:
当业务线程在处理用户请求时,如果发现访问的数据不在 Redis 里,就加个互斥锁,保证同一时间内只有一个请求来构建缓存(从数据库读取数据,再将数据更新到 Redis 里),当缓存构建完成后,再释放锁。未能获取互斥锁的请求,要么等待锁释放后重新读取缓存,要么就返回空值或者默认值。

实现互斥锁的时候,最好设置超时时间,不然第一个请求拿到了锁,然后这个请求发生了某种意外而一直阻塞,一直不释放锁,这时其他请求也一直拿不到锁,整个系统就会出现无响应的现象。

Redis 故障宕机应对方法:

服务熔断或请求限流机制;
构建 Redis 缓存高可靠集群;

服务熔断或请求限流机制
服务熔断机制,暂停业务应用对缓存服务的访问,直接返回错误,不用再继续访问数据库,从而降低对数据库的访问压力,保证数据库系统的正常运行,然后等到 Redis 恢复正常后,再允许业务应用访问缓存服务。

服务熔断机制是保护数据库的正常允许,但是暂停了业务应用访问缓存服系统,全部业务都无法正常工作

为了减少对业务的影响,我们可以启用请求限流机制,只将少部分请求发送到数据库进行处理,再多的请求就在入口直接拒绝服务,等到 Redis 恢复正常并把缓存预热完后,再解除请求限流的机制。

构建 Redis 缓存高可靠集群:
通过主从节点的方式构建 Redis 缓存高可靠集群。
如果 Redis 缓存的主节点故障宕机,从节点可以切换成为主节点,继续提供缓存服务

2.缓存击穿(热点Key问题)
原因:如果缓存中的某个热点数据过期了,此时大量的请求访问了该热点数据,就无法从缓存中读取,直接访问数据库,数据库很容易就被高并发的请求冲垮

应对缓存击穿可以采取前面说到两种方案:

互斥锁方案,保证同一时间只有一个业务线程更新缓存,未能获取互斥锁的请求,要么等待锁释放后重新读取缓存,要么就返回空值或者默认值。
不给热点数据设置过期时间,由后台异步更新缓存,或者在热点数据准备要过期前,提前通知后台线程更新缓存以及重新设置过期时间

3.缓存穿透
原因:
当用户访问的数据,既不在缓存中,也不在数据库中,导致请求在访问缓存时,发现缓存缺失,再去访问数据库时,发现数据库中也没有要访问的数据,没办法构建缓存数据,来服务后续的请求。那么当有大量这样的请求到来时,数据库的压力骤增

应对缓存穿透的方案,常见的方案有三种。

第一种方案,非法请求的限制;
第二种方案,缓存空值或者默认值;
第三种方案,使用布隆过滤器快速判断数据是否存在,避免通过查询数据库来判断数据是否存在

非法请求的限制:

当有大量恶意请求访问不存在的数据的时候,也会发生缓存穿透,因此在 API 入口处我们要判断求请求参数是否合理,请求参数是否含有非法值、请求字段是否存在,如果判断出是恶意请求就直接返回错误,避免进一步访问缓存和数据库

缓存空值或者默认值

当我们发现缓存穿透的现象时,可以针对查询的数据,在缓存中设置一个空值或者默认值,这样后续请求就可以从缓存中读取到空值或者默认值,返回给应用,而不会继续查询数据库

布隆过滤器:

通过查询布隆过滤器快速判断数据是否存在,如果不存在,就不用通过查询数据库来判断数据是否存在。

布隆过滤器是如何工作的呢?
布隆过滤器由「初始值都为 0 的位图数组」和「 N 个哈希函数」两部分组成。当我们在写入数据库数据时,在布隆过滤器里做个标记,这样下次查询数据是否在数据库时,只需要查询布隆过滤器,如果查询到数据没有被标记,说明不在数据库中。

布隆过滤器会通过 3 个操作完成标记:

第一步,使用 N 个哈希函数分别对数据做哈希计算,得到 N 个哈希值;
第二步,将第一步得到的 N 个哈希值对位图数组的长度取模,得到每个哈希值在位图数组的对应位置。
第三步,将每个哈希值在位图数组的对应位置的值设置为 1;
举个例子,假设有一个位图数组长度为 8,哈希函数 3 个的布隆过滤器。

在这里插入图片描述
在数据库写入数据 x 后,把数据 x 标记在布隆过滤器时,数据 x 会被 3 个哈希函数分别计算出 3 个哈希值,然后在对这 3 个哈希值对 8 取模,假设取模的结果为 1、4、6,然后把位图数组的第 1、4、6 位置的值设置为 1。当应用要查询数据 x 是否数据库时,通过布隆过滤器只要查到位图数组的第 1、4、6 位置的值是否全为 1,只要有一个为 0,就认为数据 x 不在数据库中。

布隆过滤器由于是基于哈希函数实现查找的,高效查找的同时存在哈希冲突的可能性,比如数据 x 和数据 y 可能都落在第 1、4、6 位置,而事实上,可能数据库中并不存在数据 y,存在误判的情况

查询布隆过滤器说数据存在,并不一定证明数据库中存在这个数据,但是查询到数据不存在,数据库中一定就不存在这个数据

4.缓存预热:
概念:在业务刚上线的时候,提前把数据缓起来,而不是等待用户访问才来触发缓存构建

最后

以上就是殷勤冷风为你收集整理的redis缓存篇知识点总结的全部内容,希望文章能够帮你解决redis缓存篇知识点总结所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(41)

评论列表共有 0 条评论

立即
投稿
返回
顶部