我是靠谱客的博主 怕孤独宝贝,最近开发中收集的这篇文章主要介绍Spark的Dataset操作(五)-多表操作 joinSpark的Dataset操作(五)-多表操作 join,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

Spark的Dataset操作(五)-多表操作 join

先看两个源数据表的定义:

scala> val df1 = spark.createDataset(Seq(("aaa", 1, 2), ("bbb", 3, 4), ("ccc", 3, 5), ("bbb", 4, 6)) ).toDF("key1","key2","key3")
df1: org.apache.spark.sql.DataFrame = [key1: string, key2: int ... 1 more field]
scala> val df2 = spark.createDataset(Seq(("aaa", 2, 2),
("bbb", 3, 5),
("ddd", 3, 5),
("bbb", 4, 6), ("eee", 1, 2), ("aaa", 1, 5), ("fff",5,6))).toDF("key1","key2","key4")
df2: org.apache.spark.sql.DataFrame = [key1: string, key2: int ... 1 more field]
scala> df1.printSchema
root
|-- key1: string (nullable = true)
|-- key2: integer (nullable = false)
|-- key3: integer (nullable = false)
scala> df2.printSchema
root
|-- key1: string (nullable = true)
|-- key2: integer (nullable = false)
|-- key4: integer (nullable = false)
scala> df1.show()
+----+----+----+
|key1|key2|key3|
+----+----+----+
| aaa|
1|
2|
| bbb|
3|
4|
| ccc|
3|
5|
| bbb|
4|
6|
+----+----+----+
scala> df2.show()
+----+----+----+
|key1|key2|key4|
+----+----+----+
| aaa|
2|
2|
| bbb|
3|
5|
| ddd|
3|
5|
| bbb|
4|
6|
| eee|
1|
2|
| aaa|
1|
5|
| fff|
5|
6|
+----+----+----+

Spark对join的支持很丰富,等值连接,条件连接,自然连接都支持。连接类型包括内连接,外连接,左外连接,右外连接,左半连接以及笛卡尔连接。

下面一一示例,先看内连接

/*
内连接 select * from df1 join df2 on df1.key1=df2.key1
*/
scala> val df3 = df1.join(df2,"key1")
df3: org.apache.spark.sql.DataFrame = [key1: string, key2: int ... 3 more fields]
scala> df3.printSchema
root
|-- key1: string (nullable = true)
|-- key2: integer (nullable = false)
|-- key3: integer (nullable = false)
|-- key2: integer (nullable = false)
|-- key4: integer (nullable = false)
scala> df3.show
+----+----+----+----+----+
|key1|key2|key3|key2|key4|
+----+----+----+----+----+
| aaa|
1|
2|
1|
5|
| aaa|
1|
2|
2|
2|
| bbb|
3|
4|
4|
6|
| bbb|
3|
4|
3|
5|
| bbb|
4|
6|
4|
6|
| bbb|
4|
6|
3|
5|
+----+----+----+----+----+
/*
还是内连接,这次用joinWith。和join的区别是连接后的新Dataset的schema会不一样,注意和上面的对比一下。
*/
scala> val df4=df1.joinWith(df2,df1("key1")===df2("key1"))
df4: org.apache.spark.sql.Dataset[(org.apache.spark.sql.Row, org.apache.spark.sql.Row)] = [_1: struct<key1: string, key2: int ... 1 more field>, _2: struct<key1: string, key2: int ... 1 more field>]
scala> df4.printSchema
root
|-- _1: struct (nullable = false)
|
|-- key1: string (nullable = true)
|
|-- key2: integer (nullable = false)
|
|-- key3: integer (nullable = false)
|-- _2: struct (nullable = false)
|
|-- key1: string (nullable = true)
|
|-- key2: integer (nullable = false)
|
|-- key4: integer (nullable = false)
scala> df4.show
+---------+---------+
|
_1|
_2|
+---------+---------+
|[aaa,1,2]|[aaa,1,5]|
|[aaa,1,2]|[aaa,2,2]|
|[bbb,3,4]|[bbb,4,6]|
|[bbb,3,4]|[bbb,3,5]|
|[bbb,4,6]|[bbb,4,6]|
|[bbb,4,6]|[bbb,3,5]|
+---------+---------+

然后是外连接:

/*
select * from df1 outer join df2 on df1.key1=df2.key1
*/
scala> val df5 = df1.join(df2,df1("key1")===df2("key1"), "outer")
df5: org.apache.spark.sql.DataFrame = [key1: string, key2: int ... 4 more fields]
scala> df5.show
+----+----+----+----+----+----+
|key1|key2|key3|key1|key2|key4|
+----+----+----+----+----+----+
|null|null|null| ddd|
3|
5|
| ccc|
3|
5|null|null|null|
| aaa|
1|
2| aaa|
2|
2|
| aaa|
1|
2| aaa|
1|
5|
| bbb|
3|
4| bbb|
3|
5|
| bbb|
3|
4| bbb|
4|
6|
| bbb|
4|
6| bbb|
3|
5|
| bbb|
4|
6| bbb|
4|
6|
|null|null|null| fff|
5|
6|
|null|null|null| eee|
1|
2|
+----+----+----+----+----+----+

下面是左外连接,右外连接和左半连接:

/*
左外连接
*/
scala> val df6 = df1.join(df2,df1("key1")===df2("key1"), "left_outer")
df6: org.apache.spark.sql.DataFrame = [key1: string, key2: int ... 4 more fields]
scala> df6.show
+----+----+----+----+----+----+
|key1|key2|key3|key1|key2|key4|
+----+----+----+----+----+----+
| aaa|
1|
2| aaa|
1|
5|
| aaa|
1|
2| aaa|
2|
2|
| bbb|
3|
4| bbb|
4|
6|
| bbb|
3|
4| bbb|
3|
5|
| ccc|
3|
5|null|null|null|
| bbb|
4|
6| bbb|
4|
6|
| bbb|
4|
6| bbb|
3|
5|
+----+----+----+----+----+----+
/*
右外连接
*/
scala> val df7 = df1.join(df2,df1("key1")===df2("key1"), "right_outer")
df7: org.apache.spark.sql.DataFrame = [key1: string, key2: int ... 4 more fields]
scala> df7.show
+----+----+----+----+----+----+
|key1|key2|key3|key1|key2|key4|
+----+----+----+----+----+----+
| aaa|
1|
2| aaa|
2|
2|
| bbb|
4|
6| bbb|
3|
5|
| bbb|
3|
4| bbb|
3|
5|
|null|null|null| ddd|
3|
5|
| bbb|
4|
6| bbb|
4|
6|
| bbb|
3|
4| bbb|
4|
6|
|null|null|null| eee|
1|
2|
| aaa|
1|
2| aaa|
1|
5|
|null|null|null| fff|
5|
6|
+----+----+----+----+----+----+
/*
左半连接
*/
scala> val df8 = df1.join(df2,df1("key1")===df2("key1"), "leftsemi")
df8: org.apache.spark.sql.DataFrame = [key1: string, key2: int ... 1 more field]
scala> df8.show
+----+----+----+
|key1|key2|key3|
+----+----+----+
| aaa|
1|
2|
| bbb|
3|
4|
| bbb|
4|
6|
+----+----+----+

笛卡尔连接不太常用,毕竟现在用spark玩的表都大得很,做这种全连接成本太大了。

/*
笛卡尔连接
*/
scala> val df9 = df1.crossJoin(df2)
df9: org.apache.spark.sql.DataFrame = [key1: string, key2: int ... 4 more fields]
scala> df9.count
res17: Long = 28
/* 就显示前10条结果吧 */
scala> df9.show(10)
+----+----+----+----+----+----+
|key1|key2|key3|key1|key2|key4|
+----+----+----+----+----+----+
| aaa|
1|
2| aaa|
2|
2|
| aaa|
1|
2| bbb|
3|
5|
| aaa|
1|
2| ddd|
3|
5|
| aaa|
1|
2| bbb|
4|
6|
| aaa|
1|
2| eee|
1|
2|
| aaa|
1|
2| aaa|
1|
5|
| aaa|
1|
2| fff|
5|
6|
| bbb|
3|
4| aaa|
2|
2|
| bbb|
3|
4| bbb|
3|
5|
| bbb|
3|
4| ddd|
3|
5|
+----+----+----+----+----+----+
only showing top 10 rows

下面这个例子还是个等值连接,区别之前的等值连接是去调用两个表的重复列,就像自然连接一样:

/*
基于两个公共字段key1和key的等值连接
*/
scala> val df10 = df1.join(df2, Seq("key1","key2"))
df10: org.apache.spark.sql.DataFrame = [key1: string, key2: int ... 2 more fields]
scala> df10.show
+----+----+----+----+
|key1|key2|key3|key4|
+----+----+----+----+
| aaa|
1|
2|
5|
| bbb|
3|
4|
5|
| bbb|
4|
6|
6|
+----+----+----+----+

条件连接在spark的低版本好像是不支持的,反正现在是ok啦~

/*
select df1.*,df2.* from df1 join df2
on df1.key1=df2.key1 and df1.key2>df2.key2
*/
scala> val df11 = df1.join(df2, df1("key1")===df2("key1") && df1("key2")>df2("key2"))
df11: org.apache.spark.sql.DataFrame = [key1: string, key2: int ... 4 more fields]
scala> df11.show
+----+----+----+----+----+----+
|key1|key2|key3|key1|key2|key4|
+----+----+----+----+----+----+
| bbb|
4|
6| bbb|
3|
5|
+----+----+----+----+----+----+

最后

以上就是怕孤独宝贝为你收集整理的Spark的Dataset操作(五)-多表操作 joinSpark的Dataset操作(五)-多表操作 join的全部内容,希望文章能够帮你解决Spark的Dataset操作(五)-多表操作 joinSpark的Dataset操作(五)-多表操作 join所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(39)

评论列表共有 0 条评论

立即
投稿
返回
顶部