概述
本文主要介绍spark join相关操作。
讲述spark连接相关的三个方法join,left-outer-join,right-outer-join,在这之前,我们用hiveSQL先跑出了结果以方便进行对比。
我们以实例来进行说明。我的实现步骤记录如下。
1、数据准备
2、HSQL描述
3、Spark描述
1、数据准备
我们准备两张Hive表,分别是orders(订单表)和drivers(司机表),通过driver_id字段进行关联。数据如下:
orders
orders表有两个字段,订单id:order_id和司机id:driver_id。司机id将作为连接键。
通过select可以看到三条数据。
hive (gulfstream_test)> select * from orders;
OK
orders.order_id orders.driver_id
5000
5001
5002
Time taken: 0.387 seconds, Fetched: 3 row(s)
drivers
drivers表由两个字段,司机id:driver_id和车辆id:car_id。司机id将作为连接键。
通过select可以看到两条数据。
hive (gulfstream_test)> select * from drivers;
OK
drivers.driver_id drivers.car_id
100
103
Time taken: 0.036 seconds, Fetched: 2 row(s)
2、HSQL描述
JOIN
自然连接,输出连接键匹配的记录。
可以看到,通过driver_id匹配的数据只有一条。
hive (gulfstream_test)> select * from orders t1 join drivers t2 on (t1.driver_id = t2.driver_id) ;
OK
t1.order_id t1.driver_id t2.driver_id t2.car_id
5000 5000 100
Time taken: 36.079 seconds, Fetched: 1 row(s)
LEFT OUTER JOIN
左外链接,输出连接键匹配的记录,左侧的表无论匹配与否都输出。
可以看到,通过driver_id匹配的数据只有一条,不过所有orders表中的记录都被输出了,drivers中未能匹配的字段被置为空。
hive (gulfstream_test)> select * from orders t1 left outer join drivers t2 on (t1.driver_id = t2.driver_id) ;
OK
t1.order_id t1.driver_id t2.driver_id t2.car_id
5000 5000 100
5001 NULL NULL
5002 NULL NULL
Time taken: 36.063 seconds, Fetched: 3 row(s)
RIGHT OUTER JOIN
右外连接,输出连接键匹配的记录,右侧的表无论匹配与否都输出。
可以看到,通过driver_id匹配的数据只有一条,不过所有drivers表中的记录都被输出了,orders中未能匹配的字段被置为空。
hive (gulfstream_test)> select * from orders t1 right outer join drivers t2 on (t1.driver_id = t2.driver_id) ;
OK
t1.order_id t1.driver_id t2.driver_id t2.car_id
5000 5000 100
NULL NULL 5003 103
Time taken: 30.089 seconds, Fetched: 2 row(s)
3、Spark描述
spark实现join的方式也是通过RDD的算子,spark同样提供了三个算子join,leftOuterJoin,rightOuterJoin。
在下面给出的例子中,我们通过spark-hive读取了Hive中orders表和drivers表中的数据,这时候数据的表现形式是DataFrame,如果要使用Join操作:
1)首先需要先将DataFrame转化成了JavaRDD。
2)不过,JavaRDD其实是没有join算子的,下面还需要通过mapToPair算子将JavaRDD转换成JavaPairRDD,这样就可以使用Join了。
下面例子中给出了三种join操作的实现方式,在join之后,通过collect()函数把数据拉到Driver端本地,并通过标准输出打印。
需要指出的是
1)join算子(join,leftOuterJoin,rightOuterJoin)只能通过PairRDD使用;
2)join算子操作的Tuple2类型中,Object1是连接键,我只试过Integer和String,Object2比较灵活,甚至可以是整个Row。
这里我们使用driver_id作为连接键。 所以在输出Tuple2的时候,我们将driver_id放在了前面。
Join.java
/*
* spark-submit --queue=root.zhiliangbu_prod_datamonitor spark-join-1.0-SNAPSHOT-jar-with-dependencies.jar
* */
public class Join implements Serializable {
private transient JavaSparkContext javaSparkContext;
private transient HiveContext hiveContext;
/*
* 初始化Load
* 创建sparkContext, sqlContext, hiveContext
* */
public Join() {
initSparckContext();
initHiveContext();
}
/*
* 创建sparkContext
* */
private void initSparckContext() {
String warehouseLocation = System.getProperty("user.dir");
SparkConf sparkConf = new SparkConf()
.setAppName("spark-join")
.set("spark.sql.warehouse.dir", warehouseLocation)
.setMaster("yarn-client");
javaSparkContext = new JavaSparkContext(sparkConf);
}
/*
* 创建hiveContext
* 用于读取Hive中的数据
* */
private void initHiveContext() {
hiveContext = new HiveContext(javaSparkContext);
}
public void join() {
/*
* 生成rdd1
* */
String query1 = "select * from gulfstream_test.orders";
DataFrame rows1 = hiveContext.sql(query1).select("order_id", "driver_id");
JavaPairRDD rdd1 = rows1.toJavaRDD().mapToPair(new PairFunction() {
@Override
public Tuple2 call(Row row) throws Exception {
String orderId = (String)row.get(0);
String driverId = (String)row.get(1);
return new Tuple2(driverId, orderId);
}
});
/*
* 生成rdd2
* */
String query2 = "select * from gulfstream_test.drivers";
DataFrame rows2 = hiveContext.sql(query2).select("driver_id", "car_id");
JavaPairRDD rdd2 = rows2.toJavaRDD().mapToPair(new PairFunction() {
@Override
public Tuple2 call(Row row) throws Exception {
String driverId = (String)row.get(0);
String carId = (String)row.get(1);
return new Tuple2(driverId, carId);
}
});
/*
* join
* */
System.out.println(" ****************** join *******************");
JavaPairRDD> joinRdd = rdd1.join(rdd2);
Iterator>> it1 = joinRdd.collect().iterator();
while (it1.hasNext()) {
Tuple2> item = it1.next();
System.out.println("driver_id:" + item._1 + ", order_id:" + item._2._1 + ", car_id:" + item._2._2 );
}
/*
* leftOuterJoin
* */
System.out.println(" ****************** leftOuterJoin *******************");
JavaPairRDD>> leftOuterJoinRdd = rdd1.leftOuterJoin(rdd2);
Iterator>>> it2 = leftOuterJoinRdd.collect().iterator();
while (it2.hasNext()) {
Tuple2>> item = it2.next();
System.out.println("driver_id:" + item._1 + ", order_id:" + item._2._1 + ", car_id:" + item._2._2 );
}
/*
* rightOuterJoin
* */
System.out.println(" ****************** rightOuterJoin *******************");
JavaPairRDD, String>> rightOuterJoinRdd = rdd1.rightOuterJoin(rdd2);
Iterator, String>>> it3 = rightOuterJoinRdd.collect().iterator();
while (it3.hasNext()) {
Tuple2, String>> item = it3.next();
System.out.println("driver_id:" + item._1 + ", order_id:" + item._2._1 + ", car_id:" + item._2._2 );
}
}
public static void main(String[] args) {
Join sj = new Join();
sj.join();
}
}
执行结果
其中Optional.absent()表示的就是null,可以看到和HSQL是一致的。
Application ID is application_1508228032068_2746260, trackingURL: http://10.93.21.21:4040
****************** join *******************
driver_id:5000, order_id:1000, car_id:100
****************** leftOuterJoin *******************
driver_id:5001, order_id:1001, car_id:Optional.absent()
driver_id:5002, order_id:1002, car_id:Optional.absent()
driver_id:5000, order_id:1000, car_id:Optional.of(100)
****************** rightOuterJoin *******************
driver_id:5003, order_id:Optional.absent(), car_id:103
driver_id:5000, order_id:Optional.of(1000), car_id:100
由于数据量不大,我没有从执行效率上进行考量。
根据经验,一般在数据量较大的情况下,HSQL的执行效率会高一些,如果数据量较小,Spark会快。
最后
以上就是复杂白猫为你收集整理的java spark leftjoin_spark三种连接join的全部内容,希望文章能够帮你解决java spark leftjoin_spark三种连接join所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复