概述
Gena loves sequences of numbers. Recently, he has discovered a new type of sequences which he called an almost arithmetical progression. A sequence is an almost arithmetical progression, if its elements can be represented as:
- a1 = p, where p is some integer;
- ai = ai - 1 + ( - 1)i + 1·q (i > 1), where q is some integer.
Right now Gena has a piece of paper with sequence b, consisting of n integers. Help Gena, find there the longest subsequence of integers that is an almost arithmetical progression.
Sequence s1, s2, ..., sk is a subsequence of sequence b1, b2, ..., bn, if there is such increasing sequence of indexesi1, i2, ..., ik (1 ≤ i1 < i2 < ... < ik ≤ n), that bij = sj. In other words, sequence s can be obtained from b by crossing out some elements.
The first line contains integer n (1 ≤ n ≤ 4000). The next line contains n integers b1, b2, ..., bn (1 ≤ bi ≤ 106).
Print a single integer — the length of the required longest subsequence.
2 3 5
2
4 10 20 10 30
3
In the first test the sequence actually is the suitable subsequence.
In the second test the following subsequence fits: 10, 20, 10.
题意:从给定的有序的序列中找最多的p,q,p,q.
dp[i][j]:代表在第 i 个数前一个数是 j 的情况下的最多值,
则:
dp[i][j]=dp[j][pre] + 1,
#include<cstdio>
#include<stdlib.h>
#include<string.h>
#include<string>
#include<map>
#include<cmath>
#include<iostream>
#include <queue>
#include <stack>
#include<algorithm>
#include<set>
using namespace std;
#define INF 1e8
#define eps 1e-8
#define LL long long
#define maxn 100105
#define mod 1000000009
int n,a[4004],dp[4004][4004];
int main()
{
while(scanf("%d",&n)==1)
{
int ans=-1;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
int pre=0;
for(int j=0;j<i;j++)
{
dp[i][j]=dp[j][pre]+1;
if(a[i]==a[j]) pre=j;
ans=max(ans,dp[i][j]);
}
}
printf("%dn",ans);
}
return 0;
}
/*
8
10 10 20 30 20 10 20 40
*/
最后
以上就是清爽项链为你收集整理的CodeForces 256A (dp)的全部内容,希望文章能够帮你解决CodeForces 256A (dp)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复