我是靠谱客的博主 无辜发夹,最近开发中收集的这篇文章主要介绍Poisson Equation方程求解--转载Poisson Equation ,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

Poisson Equation

From Wikiversity
Jump to: navigation, search

Contents

 [hide] 
  • 1 Poisson's Equation
    • 1.1 Definition
    • 1.2 Description
    • 1.3 Solution to Case with 4 Homogeneous Boundary Conditions
      • 1.3.1 Step 1: Separate Variables
      • 1.3.2 Step 2: Translate Boundary Conditions
      • 1.3.3 Step 3: Solve Both SLPs
      • 1.3.4 Step 4: Solve Non-homogeneous Equation
    • 1.4 Solution to General Case with 4 Non-homogeneous Boundary Conditions
      • 1.4.1 Step 1: Decompose Problem
      • 1.4.2 Step 2: Solve Subproblems
      • 1.4.3 Step 3: Combine Solutions

Poisson's Equation[edit]

Definition[edit]

nabla^2 u = f rightarrow frac{partial^2 u}{partial x_1^2} + frac{partial^2 u}{partial x_2^2} + frac{partial^2 u}{partial x_3^2} = f ~.

Description[edit]

Appears in almost every field of physics.

Solution to Case with 4 Homogeneous Boundary Conditions[edit]

Let's consider the following example, where u_{xx}+u_{yy}=f(x,y), (x,y) in lbrack 0,l rbrack times lbrack 0,m rbrack~. and the Dirichlet boundary conditions are as follows:

begin{align} u(0,y)&=&0 \ u(l,y)&=&0 \ u(x,0)&=&0 \ u(x,m)&=&0 \end{align}

In order to solve this equation, let's consider that the solution to the homogeneous equation will allow us to obtain a system of basis functions that satisfy the given boundary conditions. We start with the Laplace equation: u_{xx}+u_{yy}=0~.

Step 1: Separate Variables[edit]

Consider the solution to the Poisson equation as u(x,y)=x(x)y(y)~. Separating variables as in the solution to the Laplace equation yields:
x''-mu x=0
y''+mu y=0

Step 2: Translate Boundary Conditions[edit]

As in the solution to the Laplace equation, translation of the boundary conditions yields:
begin{alignat}{2} x(0) & = & 0\ x(l) & = & 0\ y(0) & = & 0\ y(m) & = & 0end{alignat}

Step 3: Solve Both SLPs[edit]

Because all of the boundary conditions are homogeneous, we can solve both SLPs separately.

left .begin{alignat}{2} x''-mu x & = & 0 \ x(0) & = & 0 \ x(l) & = & 0end{alignat}right } x_m(x) = sin frac{(m+1)pi x}{l},m=0,1,2,cdots

left .begin{alignat}{2} y''-mu y & = & 0 \ y(0) & = & 0 \ y(m) & = & 0end{alignat}right } y_n(y) = sin frac{(n+1)pi y}{m},n=0,1,2,cdots

Step 4: Solve Non-homogeneous Equation[edit]

Consider the solution to the non-homogeneous equation as follows:

begin{align} u(x,y) & := sum_{m,n=0}^infty a_{mn}x_m(x)y_n(y) \ & = sum_{m,n=0}^infty a_{mn}sin frac{(m+1)pi x}{l}sin frac{(n+1)pi y}{m}end{align}

We substitute this into the Poisson equation and solve:

begin{align}f(x,y)& = u_{xx}+u_{yy} \& = sum_{m,n=0}^infty left { a_{mn}left lbrack -frac{(m+1)^2pi^2}{l^2} right rbrack sin frac{(m+1)pi x}{l} sin frac{(n+1)pi y}{m} right } +left { a_{mn}left lbrack -frac{(n+1)^2pi^2}{m^2} right rbrack sin frac{(m+1)pi x}{l} sin frac{(n+1)pi y}{m} right } \& = sum_{m,n=0}^infty underbrace{left [ -a_{mn} left ( frac{(m+1)^2pi^2}{l^2}+frac{(n+1)^2pi^2}{m^2} right ) right ]}_{a_{mn}} sin frac{(m+1)pi x}{l} sin frac{(n+1)pi y}{m}end{align} begin{align}a_{mn}&=frac{intlimits_0^m int limits_0^l f(x,y) sin frac{(m+1)pi x}{l} sin frac{(n+1)pi y}{m} dx dy}{intlimits_0^m sin^2 frac{(n+1)pi y}{m} dy intlimits_0^l sin^2 frac{(m+1)pi x}{l} dx } \&=frac{4}{lm}intlimits_0^m int limits_0^l f(x,y) sin frac{(m+1)pi x}{l} sin frac{(n+1)pi y}{m} dx dyend{align} a_{mn}=-frac{4}{lmleft [ frac{(m+1)^2pi^2}{l^2} + frac{(n+1)^2pi^2}{m^2} right ]}intlimits_0^m int limits_0^l f(x,y) sin frac{(m+1)pi x}{l} sin frac{(n+1)pi y}{m} dx dy; m,n=0,1,2,cdots

Solution to General Case with 4 Non-homogeneous Boundary Conditions[edit]

Let's consider the following example, where u_{xx}+u_{yy}=f(x,y), (x,y) in lbrack 0,l rbrack times lbrack 0,m rbrack~. and the boundary conditions are as follows:

begin{align} u(x,0)&=f_1 \ u(x,m)&=f_2 \ u(0,y)&=f_3 \ u(l,y)&=f_4end{align}

The boundary conditions can be Dirichlet, Neumann or Robin type.

Step 1: Decompose Problem[edit]

For the Poisson equation, we must decompose the problem into 2 sub-problems and use superposition to combine the separate solutions into one complete solution.

  1. The first sub-problem is the homogeneous Laplace equation with the non-homogeneous boundary conditions. The individual conditions must retain their type (Dirichlet, Neumann or Robin type) in the sub-problem:

    begin{cases}u_{xx}+u_{yy}=0 \u(x,0)=f_1 \u(x,m)=f_2 \u(0,y)=f_3 \u(l,y)=f_4end{cases}
  2. The second sub-problem is the non-homogeneous Poisson equation with all homogeneous boundary conditions. The individual conditions must retain their type (Dirichlet, Neumann or Robin type) in the sub-problem:

    begin{cases}u_{xx}+u_{yy}=f(x,y) \u(x,0)=0 \u(x,m)=0 \u(0,y)=0 \u(l,y)=0end{cases}

Step 2: Solve Subproblems[edit]

Depending on how many boundary conditions are non-homogeneous, the Laplace equation problem will have to be subdivided into as many sub-problems. The Poisson sub-problem can be solved just as described above.

Step 3: Combine Solutions[edit]

The complete solution to the Poisson equation is the sum of the solution from the Laplace sub-problem u_1(x,y) and the homogeneous Poisson sub-problem u_2(x,y):
u(x,y)=u_1(x,y)+u_2(x,y)


来源: http://en.wikiversity.org/wiki/Poisson_Equation


最后

以上就是无辜发夹为你收集整理的Poisson Equation方程求解--转载Poisson Equation 的全部内容,希望文章能够帮你解决Poisson Equation方程求解--转载Poisson Equation 所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(46)

评论列表共有 0 条评论

立即
投稿
返回
顶部