贝叶斯调参
1.数据读取与转换
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90import pandas as pd import numpy as np from sklearn.metrics import f1_score, make_scorer import os import seaborn as sns import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") def reduce_mem_usage(df): start_mem = df.memory_usage().sum() / 1024 ** 2 print('Memory usage of dataframe is {:.2f} MB'.format(start_mem)) for col in df.columns: col_type = df[col].dtype if col_type != object: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) else: df[col] = df[col].astype('category') end_mem = df.memory_usage().sum() / 1024 ** 2 print('Memory usage after optimization is: {:.2f} MB'.format(end_mem)) print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem)) return df # 读取数据 data = pd.read_csv('../data/train.csv') # 简单预处理 data_list = [] for items in data.values: data_list.append([items[0]] + [float(i) for i in items[1].split(',')] + [items[2]]) data = pd.DataFrame(np.array(data_list)) data.columns = ['id'] + ['s_'+str(i) for i in range(len(data_list[0])-2)] + ['label'] data = reduce_mem_usage(data) from sklearn.model_selection import KFold # 分离数据集,方便进行交叉验证 X_train = data.drop(['id','label'], axis=1) y_train = data['label'] # 5折交叉验证 folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) def f1_score_vali(preds, data_vali): labels = data_vali.get_label() preds = np.argmax(preds.reshape(4, -1), axis=0) score_vali = f1_score(y_true=labels, y_pred=preds, average='macro') return 'f1_score', score_vali, True def abs_sum(y_pre,y_tru): y_pre=np.array(y_pre) y_tru=np.array(y_tru) loss=(int)(sum(sum(abs(y_pre-y_tru)))) return 'f1_score',loss, True """对训练集数据进行划分,分成训练集和验证集,并进行相应的操作""" from sklearn.model_selection import train_test_split import lightgbm as lgb # 数据集划分 X_train_split, X_val, y_train_split, y_val = train_test_split(X_train, y_train, test_size=0.2) train_matrix = lgb.Dataset(X_train_split, label=y_train_split) valid_matrix = lgb.Dataset(X_val, label=y_val)
2.确定参数
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42from sklearn.model_selection import cross_val_score """定义优化函数""" def rf_cv_lgb(num_leaves, max_depth, bagging_fraction, feature_fraction, bagging_freq, min_data_in_leaf, min_child_weight, min_split_gain, reg_lambda, reg_alpha): # 建立模型 model_lgb = lgb.LGBMClassifier(boosting_type='gbdt', objective='multiclass', num_class=4, learning_rate=0.1, n_estimators=5000, num_leaves=int(num_leaves), max_depth=int(max_depth), bagging_fraction=round(bagging_fraction, 2), feature_fraction=round(feature_fraction, 2), bagging_freq=int(bagging_freq), min_data_in_leaf=int(min_data_in_leaf), min_child_weight=min_child_weight, min_split_gain=min_split_gain, reg_lambda=reg_lambda, reg_alpha=reg_alpha, n_jobs= 8 ) f1 = make_scorer(f1_score, average='micro') val = cross_val_score(model_lgb, X_train_split, y_train_split, cv=5, scoring=f1).mean() return val from bayes_opt import BayesianOptimization """定义优化参数""" bayes_lgb = BayesianOptimization( rf_cv_lgb, { 'num_leaves':(10, 200), 'max_depth':(3, 20), 'bagging_fraction':(0.5, 1.0), 'feature_fraction':(0.5, 1.0), 'bagging_freq':(0, 100), 'min_data_in_leaf':(10,100), 'min_child_weight':(0, 10), 'min_split_gain':(0.0, 1.0), 'reg_alpha':(0.0, 10), 'reg_lambda':(0.0, 10), } ) """开始优化""" bayes_lgb.maximize() print(bayes_lgb.max)
3.确定迭代次数
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35"""调整一个较小的学习率,并通过cv函数确定当前最优的迭代次数""" base_params_lgb = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 4, 'learning_rate': 0.01, 'num_leaves': 126, 'max_depth': 15, 'min_data_in_leaf': 10, 'min_child_weight':7.46, 'bagging_fraction': 1.0, 'feature_fraction': 0.5, 'bagging_freq': 43, 'reg_lambda': 7.81, 'reg_alpha': 0, 'min_split_gain': 0, 'nthread': 10, 'verbose': -1 } cv_result_lgb = lgb.cv( train_set=train_matrix, early_stopping_rounds=1000, num_boost_round=20000, nfold=5, stratified=True, shuffle=True, params=base_params_lgb, feval=f1_score_vali, seed=0 ) print('迭代次数{}'.format(len(cv_result_lgb['f1_score-mean']))) print('最终模型的f1为{}'.format(max(cv_result_lgb['f1_score-mean'])))
4.使用优化后参数跑分
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40# 优化后参数 import lightgbm as lgb """使用lightgbm 5折交叉验证进行建模预测""" cv_scores = [] for i, (train_index, valid_index) in enumerate(kf.split(X_train, y_train)): print('************************************ {} ************************************'.format(str(i+1))) X_train_split, y_train_split, X_val, y_val = X_train.iloc[train_index], y_train[train_index], X_train.iloc[valid_index], y_train[valid_index] train_matrix = lgb.Dataset(X_train_split, label=y_train_split) valid_matrix = lgb.Dataset(X_val, label=y_val) params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 4, 'learning_rate': 0.01, 'num_leaves': 116, 'max_depth': 18, 'min_data_in_leaf': 87, 'min_child_weight':3.04, 'bagging_fraction': 0.77, 'feature_fraction': 0.52, 'bagging_freq': 31, 'reg_lambda': 3.95, 'reg_alpha': 0.14, 'min_split_gain': 0.212, 'nthread': 10, 'verbose': -1, } model = lgb.train(params, train_set=train_matrix, num_boost_round=4006, valid_sets=valid_matrix, verbose_eval=1000, early_stopping_rounds=200, feval=f1_score_vali) val_pred = model.predict(X_val, num_iteration=model.best_iteration) val_pred = np.argmax(val_pred, axis=1) cv_scores.append(f1_score(y_true=y_val, y_pred=val_pred, average='macro')) print(cv_scores) print("lgb_scotrainre_list:{}".format(cv_scores)) print("lgb_score_mean:{}".format(np.mean(cv_scores))) print("lgb_score_std:{}".format(np.std(cv_scores)))
总结:暂时未获得较好评分,猜测出现局部最优以及欠拟合情况
最后
以上就是可爱项链最近收集整理的关于数据挖掘-心跳信号分类预测-Task03的全部内容,更多相关数据挖掘-心跳信号分类预测-Task03内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复