概述
休眠唤醒
想要达到的效果:
应用程序对设备文件进行read操作时, 如果没有数据则程序休眠, 直到有数据时程序被唤醒.
休眠函数
头文件 includelinuxwait.h
**wait_event_interruptible(wq, condition) **
休眠,直到condition为真;
休眠期间是可被打断的,可以被信号打断
wq参数是 wait_queue_head_t
condition 作为一个判断条件语句
#define wait_event_interruptible(wq, condition)
({
int __ret = 0;
might_sleep();
if (!(condition))
__ret = __wait_event_interruptible(wq, condition);
__ret;
})
wait_event(wq, condition)
休眠,直到condition为真;信号不能打断;
#define wait_event(wq, condition)
do {
might_sleep();
if (condition)
break;
__wait_event(wq, condition);
} while (0)
wait_event_interruptible_timeout(wq, condition, timeout)
休眠,直到condition为真或超时;
休眠期间是可被打断的,可以被信号打断;
#define wait_event_interruptible_timeout(wq, condition, timeout)
({
long __ret = timeout;
might_sleep();
if (!___wait_cond_timeout(condition))
__ret = __wait_event_interruptible_timeout(wq,
condition, timeout);
__ret;
})
wait_event_timeout(wq, condition, timeout)
休眠,直到condition为真或超时;
休眠期间是可被打断的,不可以被信号打断;
#define wait_event_interruptible_timeout(wq, condition, timeout)
({
long __ret = timeout;
might_sleep();
if (!___wait_cond_timeout(condition))
__ret = __wait_event_interruptible_timeout(wq,
condition, timeout);
__ret;
})
唤醒函数
wake_up_interruptible
唤醒x队列中状态为“TASK_INTERRUPTIBLE”的线程,只唤醒其中的一个线程
#define wake_up_interruptible(x) __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
wake_up_interruptible_nr(x, nr)
唤醒x队列中状态为“TASK_INTERRUPTIBLE”的线程,只唤醒其中的nr个线程
#define wake_up_interruptible_nr(x, nr) __wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
wake_up_interruptible_all(x)
唤醒x队列中状态为“TASK_INTERRUPTIBLE”的线程,唤醒其中的所有线程
#define wake_up_interruptible_all(x) __wake_up(x, TASK_INTERRUPTIBLE, 0, NULL)
wake_up(x)
唤醒x队列中状态为“TASK_INTERRUPTIBLE”或“TASK_UNINTERRUPTIBLE”的线程,只唤醒其中的一个线程
#define wake_up(x) __wake_up(x, TASK_NORMAL, 1, NULL)
wake_up_nr(x, nr)
唤醒x队列中状态为“TASK_INTERRUPTIBLE”或“TASK_UNINTERRUPTIBLE”的线程,只唤醒其中nr个线程
#define wake_up_nr(x, nr) __wake_up(x, TASK_NORMAL, nr, NULL)
wake_up_all(x)
唤醒x队列中状态为“TASK_INTERRUPTIBLE”或“TASK_UNINTERRUPTIBLE”的线程,唤醒其中的所有线程
#define wake_up_all(x) __wake_up(x, TASK_NORMAL, 0, NULL)
初始化 wait_queue_head_t 类型
使用DECLARE_WAIT_QUEUE_HEAD(wq)
编码:
在带有中断的设备驱动程序的框架上进行
驱动程序:
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/slab.h>
struct gpio_key{
int gpio;
struct gpio_desc *gpiod;
int flag;
int irq;
} ;
static struct gpio_key *gpio_keys_array;
/* 主设备号 */
static int major = 0;
static struct class *gpio_key_class;
/* 环形缓冲区 */
#define BUF_LEN 128
static int g_keys[BUF_LEN];
static int r, w;
#define NEXT_POS(x) ((x+1) % BUF_LEN)
static int is_key_buf_empty(void)
{
return (r == w);
}
static int is_key_buf_full(void)
{
return (r == NEXT_POS(w));
}
static void put_key(int key)
{
if (!is_key_buf_full())
{
g_keys[w] = key;
w = NEXT_POS(w);
}
}
static int get_key(void)
{
int key = 0;
if (!is_key_buf_empty())
{
key = g_keys[r];
r = NEXT_POS(r);
}
return key;
}
//休眠唤醒关键函数 wait_event_interruptible wake_up_interruptible
static DECLARE_WAIT_QUEUE_HEAD(gpio_key_wait);
/* 实现对应的open/read/write等函数,填入file_operations结构体 */
static ssize_t gpio_key_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
//printk("%s %s line %dn", __FILE__, __FUNCTION__, __LINE__);
int err;
int key;
wait_event_interruptible(gpio_key_wait, !is_key_buf_empty());//数据缓存为空 则休眠
key = get_key();
err = copy_to_user(buf, &key, 4);
return 4;
}
/* 定义自己的file_operations结构体 */
static struct file_operations gpio_key_drv = {
.owner = THIS_MODULE,
.read = gpio_key_drv_read,
};
static irqreturn_t gpio_key_isr(int irq, void *dev_id)
{
struct gpio_key *gpio_key = dev_id;
int val;
int key;
val = gpiod_get_value(gpio_key->gpiod);
printk("key %d %dn", gpio_key->gpio, val);
key = (gpio_key->gpio << 8) | val;
put_key(key);
wake_up_interruptible(&gpio_key_wait); //唤醒队列
return IRQ_HANDLED;
}
/* 1. 从platform_device获得GPIO
* 2. gpio=>irq
* 3. request_irq
*/
static int gpio_key_probe(struct platform_device *pdev)
{
int err;
struct device_node *node = pdev->dev.of_node;
int count;
int i;
enum of_gpio_flags flag;
printk("%s %s line %dn", __FILE__, __FUNCTION__, __LINE__);
count = of_gpio_count(node);
if (!count)
{
printk("%s %s line %d, there isn't any gpio availablen", __FILE__, __FUNCTION__, __LINE__);
return -1;
}
gpio_keys_array = kzalloc(sizeof(struct gpio_key) * count, GFP_KERNEL);
for (i = 0; i < count; i++)
{
gpio_keys_array[i].gpio = of_get_gpio_flags(node, i, &flag);
if (gpio_keys_array[i].gpio < 0)
{
printk("%s %s line %d, of_get_gpio_flags failn", __FILE__, __FUNCTION__, __LINE__);
return -1;
}
gpio_keys_array[i].gpiod = gpio_to_desc(gpio_keys_array[i].gpio);
gpio_keys_array[i].flag = flag & OF_GPIO_ACTIVE_LOW;
gpio_keys_array[i].irq = gpio_to_irq(gpio_keys_array[i].gpio);
}
for (i = 0; i < count; i++)
{
err = request_irq(gpio_keys_array[i].irq, gpio_key_isr,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"gpio_key", &gpio_keys_array[i]); //注册中断服务程序
}
/* 注册file_operations */
major = register_chrdev(0, "gpio_key", &gpio_key_drv); /* /dev/gpio_key */
gpio_key_class = class_create(THIS_MODULE, "gpio_key_class");
if (IS_ERR(gpio_key_class)) {
printk("%s %s line %dn", __FILE__, __FUNCTION__, __LINE__);
unregister_chrdev(major, "gpio_key");
return PTR_ERR(gpio_key_class);
}
device_create(gpio_key_class, NULL, MKDEV(major, 0), NULL, "gpio_key"); /* /dev/gpio_key */
return 0;
}
static int gpio_key_remove(struct platform_device *pdev)
{
//int err;
struct device_node *node = pdev->dev.of_node;
int count;
int i;
device_destroy(gpio_key_class, MKDEV(major, 0));
class_destroy(gpio_key_class);
unregister_chrdev(major, "gpio_key");
count = of_gpio_count(node);
for (i = 0; i < count; i++)
{
free_irq(gpio_keys_array[i].irq, &gpio_keys_array[i]);
}
kfree(gpio_keys_array);
return 0;
}
static const struct of_device_id keys[] = {
{ .compatible = "jzy,gpio_key" },
{ },
};
/* 1. 定义platform_driver */
static struct platform_driver gpio_keys_driver = {
.probe = gpio_key_probe,
.remove = gpio_key_remove,
.driver = {
.name = "gpio_key",
.of_match_table = keys,
},
};
/* 2. 在入口函数注册platform_driver */
static int __init gpio_key_init(void)
{
int err;
printk("%s %s line %dn", __FILE__, __FUNCTION__, __LINE__);
err = platform_driver_register(&gpio_keys_driver);
return err;
}
/* 3. 有入口函数就应该有出口函数:卸载驱动程序时,就会去调用这个出口函数
* 卸载platform_driver
*/
static void __exit gpio_key_exit(void)
{
printk("%s %s line %dn", __FILE__, __FUNCTION__, __LINE__);
platform_driver_unregister(&gpio_keys_driver);
}
/* 7. 其他完善:提供设备信息,自动创建设备节点 */
module_init(gpio_key_init);
module_exit(gpio_key_exit);
MODULE_LICENSE("GPL");
应用程序:
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
int main(int argc, char **argv)
{
int fd;
int val;
/* 1. 判断参数 */
if (argc != 2)
{
printf("Usage: %s <dev>n", argv[0]);
return -1;
}
/* 2. 打开文件 */
fd = open(argv[1], O_RDWR);
if (fd == -1)
{
printf("can not open file %sn", argv[1]);
return -1;
}
while (1)
{
/* 3. 读文件 */
read(fd, &val, 4); //这里没有数据的话会被驱动休眠
printf("get button : 0x%xn", val);
}
close(fd);
return 0;
}
最后
以上就是暴躁舞蹈为你收集整理的linux驱动之休眠与唤醒的全部内容,希望文章能够帮你解决linux驱动之休眠与唤醒所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复