概述
Android在标准linux基础上对休眠唤醒的实现(一)
看到了一些好文章,作者写得非常好,放进来自己仔细研究下。
转自:http://blog.csdn.net/lizhiguo0532/article/details/6453581
说明:
1. Based on linux 2.6.32 and android 2.2,only support SDR(mem).
2. 参考文章:
http://2695477.blog.51cto.com/blog/2685477/484751
http://www.docin.com/p-115475680.html
http://blogold.chinaunix.net/u3/113927/showart_2447111.html
http://www.cnmsdn.com/html/201003/1269407632ID2530.html
一、新增特性介绍
实际上,android仍然是利用了标准linux的休眠唤醒系统,只不过添加了一些使用上的新特性,early suspend、late resume、wake lock。
Early suspend - 这个机制定义了在suspend的早期,关闭显示屏的时候,一些和显示屏相关的设备,比如背光、重力感应器和触摸屏等设备都应该被关掉,但是此时系统可能还有持有wake lock的任务在运行,如音乐播放,电话,或者扫描sd卡上的文件等,这个时候整个系统还不能进入真正睡眠,直到所有的wake lock都没释放。在嵌入式设备中,悲观是一个很大的电源消耗,所有android加入了这种机制。
Late resume - 这个机制定义了在resume的后期,也就是唤醒源已经将处理器唤醒,标准linux的唤醒流程已经走完了,在android上层系统识别出这个物理上的唤醒源是上层定义的,那么上层将会发出late resume的命令给下层,这个时候将会调用相关设备注册的late resume回调函数。
Wake lock - wakelock在android的电源管理系统中扮演一个核心的角色,wakelock是一种锁的机制, 只要有task拿着这个锁, 系统就无法进入休眠, 可以被用户态进程和内核线程获得。这个锁可以是有超时的或者是没有超时的, 超时的锁会在时间过去以后自动解锁。如果没有锁了或者超时了, 内核就会启动标准linux的那套休眠机制机制来进入休眠。
二、kernel层源码解析 - early suspend 和 late resume实现
相关源码:
kernel/kernel/power/main.c
kernel/kernel/power/earlysuspend.c
kernel/kernel/power/wakelock.c
kernel/kernel/power/userwakelock.c
kernel/kernel/power/suspend.c
之前标准的linux的sysfs的接口只需要一个state就够了,现在至少需要3个接口文件:state、wake_lock、wake_unlock。现在为了配合android为休眠唤醒添加的几种新特性,可以填入文件state的模式又多了一种:on, 标准android系统中只支持state的on和mem模式,其余的暂不支持。wake_lock和wake_unlock接口对应的读写函数在文件userwakelock.c中,对wakelock.c中的create wakelock或者release wakelock进行了封装,供用户空间来使用。
如果上层用户执行:echo xxx(on or mem) > sys/power/state的话,将会调用到如下函数:
static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t n)
{
#ifdef CONFIG_SUSPEND // set
#ifdef CONFIG_EARLYSUSPEND //set
suspend_state_t state = PM_SUSPEND_ON; // for early suspend and late resume
#else
suspend_state_t state = PM_SUSPEND_STANDBY;
#endif
const char * const *s;
#endif
char *p;
int len;
int error = -EINVAL;
p = memchr(buf, '/n', n);
len = p ? p - buf : n;
/* First, check if we are requested to hibernate */
if (len == 4 && !strncmp(buf, "disk", len)) {
error = hibernate(); // 检查是否要求进入disk省电模式,暂时不支持
goto Exit;
}
#ifdef CONFIG_SUSPEND // def
for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) {
if (*s && len == strlen(*s) && !strncmp(buf, *s, len))
break;
}
if (state < PM_SUSPEND_MAX && *s)
#ifdef CONFIG_EARLYSUSPEND
if (state == PM_SUSPEND_ON || valid_state(state)) {
// 需要经过平台pm.c文件定义的模式支持检查函数,mtk只支持mem,同时如果是android发送出来的late resume命令(on),这里也会放行,往下执行
error = 0;
request_suspend_state(state); // android休眠唤醒的路线
}
#else
error = enter_state(state);// 标准linux休眠唤醒的路线
#endif
#endif
Exit:
return error ? error : n;
}
@ kernel/kernel/power/earlysuspend.c
enum {
DEBUG_USER_STATE = 1U << 0,
DEBUG_SUSPEND = 1U << 2,
};
int Earlysuspend_debug_mask = DEBUG_USER_STATE;
module_param_named(Earlysuspend_debug_mask, Earlysuspend_debug_mask, int, S_IRUGO | S_IWUSR | S_IWGRP);
static DEFINE_MUTEX(early_suspend_lock);
static LIST_HEAD(early_suspend_handlers);
static void early_sys_sync(struct work_struct *work);
static void early_suspend(struct work_struct *work);
static void late_resume(struct work_struct *work);
static DECLARE_WORK(early_sys_sync_work, early_sys_sync);
static DECLARE_WORK(early_suspend_work, early_suspend);
static DECLARE_WORK(late_resume_work, late_resume);
static DEFINE_SPINLOCK(state_lock);
enum {
SUSPEND_REQUESTED = 0x1,
SUSPENDED = 0x2,
SUSPEND_REQUESTED_AND_SUSPENDED = SUSPEND_REQUESTED | SUSPENDED,
};
static int state; // 初始化为0
static DECLARE_COMPLETION(fb_drv_ready);
void request_suspend_state(suspend_state_t new_state)
{
unsigned long irqflags;
int old_sleep;
spin_lock_irqsave(&state_lock, irqflags);
old_sleep = state & SUSPEND_REQUESTED; // state = 1 or 3
// state的值会在0->1->3->2->0循环变化,后面分析代码都可以看出这些值代表系统目前处于什么阶段,简单得说就是:正常->准备进early suspend->开始early suspend并且对名为mian的wakelock解锁,如果此时没有其余wakelock处于lock状态,那么系统就走linux的休眠唤醒路线让整个系统真正休眠,直到唤醒源发生,然后将处理器和linux层唤醒。之后android层判断本次底层醒来是由于我所定义的唤醒源引起的吗?如果不是,android将不予理会,过段时间没有wakelock锁,系统会再次走linux的休眠路线进入休眠。如果是,那么android上层就会写一个on的指令到state接口中,同样是会调用到函数request_suspend_state() -> 准备执行late resume -> 开始执行late resume,之后整个系统就这样被唤醒了。
if (Earlysuspend_debug_mask & DEBUG_USER_STATE) {
struct timespec ts; // 打印出debug信息
struct rtc_time tm;
getnstimeofday(&ts);
rtc_time_to_tm(ts.tv_sec, &tm);
pr_info("[request_suspend_state]: %s (%d->%d) at %lld "
"(%d-%02d-%02d %02d:%02d:%02d.%09lu UTC)/n",
new_state != PM_SUSPEND_ON ? "sleep" : "wakeup",
requested_suspend_state, new_state,
ktime_to_ns(ktime_get()),
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec, ts.tv_nsec);
}
// eg: [request_suspend_state]: sleep (0->3) at 97985478409 (2010-01-03 09:52:59.637902305 UTC), 这里对时间的获取和处理,在其他地方可以参考
// ready to enter earlysuspend
if (!old_sleep && new_state != PM_SUSPEND_ON) { // susepnd会进入这里
state |= SUSPEND_REQUESTED; // state = 1
pr_info("[request_suspend_state]:
sys_sync_work_queue early_sys_sync_work/n");
queue_work(sys_sync_work_queue, &early_sys_sync_work);
pr_info("[request_suspend_state]: suspend_work_queue early_suspend_work/n");
queue_work(suspend_work_queue, &early_suspend_work);
// 在wakelocks_init()函数(wakelock.c)中会创建这两个工作队列和工作者线程来专门负责处理sys_sync和early suspend的工作。关于工作队列的详情参考我工作队列的文章
}
// ready to enter lateresume
else if (old_sleep && new_state == PM_SUSPEND_ON) {
state &= ~SUSPEND_REQUESTED; // state = 2
wake_lock(&main_wake_lock); // 对main wakelock上锁
pr_info("[request_suspend_state]: suspend_work_queue late_resume_work/n" );
if (queue_work(suspend_work_queue, &late_resume_work)) {
// 提交late resume的工作项
//
// In order to synchronize the backlight turn on timing,
// block the thread and wait for fb driver late_resume()
// callback function is completed
//
wait_for_completion(&fb_drv_ready);
// 等待完成量fb_drv_ready,他会在late resume结束之后完成
}
}
requested_suspend_state = new_state;
// 存储本次休眠或者是唤醒的状态,供下次休眠或者唤醒使用
spin_unlock_irqrestore(&state_lock, irqflags);
}
在系统suspend的时候提交的两个工作项会陆续被执行到,那么下面就来看一下执行early suspend的关键函数。
static void early_sys_sync(struct work_struct *work)
{
wake_lock(&sys_sync_wake_lock);
printk("[sys_sync work] start/n");
sys_sync(); // 同步文件系统
printk("[sys_sync wrok] done/n");
wake_unlock(&sys_sync_wake_lock);
}
static void early_suspend(struct work_struct *work)
{
struct early_suspend *pos;
unsigned long irqflags;
int abort = 0;
mutex_lock(&early_suspend_lock);
spin_lock_irqsave(&state_lock, irqflags);
if (state == SUSPEND_REQUESTED)
state |= SUSPENDED; // state = 3
else
abort = 1;
spin_unlock_irqrestore(&state_lock, irqflags);
if (abort) { // suspend 中止退出
if (Earlysuspend_debug_mask & DEBUG_SUSPEND)
pr_info("[early_suspend]: abort, state %d/n", state);
mutex_unlock(&early_suspend_lock);
goto abort;
}
if (Earlysuspend_debug_mask & DEBUG_SUSPEND)
pr_info("[early_suspend]: call handlers/n");
list_for_each_entry(pos, &early_suspend_handlers, link) {
if (pos->suspend != NULL)
pos->suspend(pos);
}
// 函数register_early_suspend()会将每一个early suspend项以优先级大小注册到链表early_suspend_handlers中,这里就是一次取出,然后执行对应的early suspend回调函数
mutex_unlock(&early_suspend_lock);
// Remove sys_sync from early_suspend,
// and use work queue to complete sys_sync
abort:
spin_lock_irqsave(&state_lock, irqflags);
if (state == SUSPEND_REQUESTED_AND_SUSPENDED)
{
pr_info("[early_suspend]: wake_unlock(main)/n");
wake_unlock(&main_wake_lock);
// main wakelock 解锁。看到这里,好像系统执行了early suspend之后就没有往下执行标准linux的suspend流程了,其实不是,android的做法是,不是你执行完了early suspend 的回调就可以马上走标准linux的suspend流程,而是会检查还有没有wakelock被持有,如果所有wakelock全是解锁状态,那么就会执行标准linux的suspend步骤。
}
spin_unlock_irqrestore(&state_lock, irqflags);
}
static void late_resume(struct work_struct *work)
{
struct early_suspend *pos;
unsigned long irqflags;
int abort = 0;
int completed = 0;
mutex_lock(&early_suspend_lock);
spin_lock_irqsave(&state_lock, irqflags);
// return back from suspend
if (state == SUSPENDED)
state &= ~SUSPENDED; // state = 0
else
abort = 1;
spin_unlock_irqrestore(&state_lock, irqflags);
if (abort) {
if (Earlysuspend_debug_mask & DEBUG_SUSPEND)
pr_info("[late_resume]: abort, state %d/n", state);
goto abort;
}
if (Earlysuspend_debug_mask & DEBUG_SUSPEND)
pr_info("[late_resume]: call handlers/n");
list_for_each_entry_reverse(pos, &early_suspend_handlers, link)
{
if (!completed && pos->level < EARLY_SUSPEND_LEVEL_DISABLE_FB) {
complete(&fb_drv_ready);
completed = 1;
}
if (pos->resume != NULL)
pos->resume(pos);
}
// 以和early suspend的逆序执行链表early_suspend_handlers上的late resume回调函数
if (Earlysuspend_debug_mask & DEBUG_SUSPEND)
pr_info("[late_resume]: done/n");
abort:
if (!completed)
complete(&fb_drv_ready); // 设置完成量ok
mutex_unlock(&early_suspend_lock);
}
三、kernel层源码解析 - wakelock的重要地位
wakelock在android的休眠唤醒机制中扮演着及其重要的角色,主要源码位于文件:kernel/kernel/power/wakelock.c,kernel/include/linux/wakelock.h中。
wakelocks_init()函数所做的工作是整个wakelock可以工作起来的基础,所有这里先说说这个函数。
static int __init wakelocks_init(void)
{
int ret;
int i;
for (i = 0; i < ARRAY_SIZE(active_wake_locks); i++)
INIT_LIST_HEAD(&active_wake_locks[i]);
// 初始化active_wake_locks数组中的两个类型锁链表: WAKE_LOCK_SUSPEND,WAKE_LOCK_IDLE
#ifdef CONFIG_WAKELOCK_STAT // defined
wake_lock_init(&deleted_wake_locks, WAKE_LOCK_SUSPEND,
"deleted_wake_locks");
// 初始化wakelock deleted_wake_locks,同时将其加入到非活动锁链表中
#endif
wake_lock_init(&main_wake_lock, WAKE_LOCK_SUSPEND, "main");
wake_lock_init(&sys_sync_wake_lock, WAKE_LOCK_SUSPEND, "sys_sync");
wake_lock(&main_wake_lock);
wake_lock_init(&unknown_wakeup, WAKE_LOCK_SUSPEND, "unknown_wakeups");
// 初始化wakelock: main, sys_sync, unknown_wakeups, 同时将其加入到非活动锁链表中
// 给 main_wake_lock 加锁
ret = platform_device_register(&power_device);
if (ret) {
pr_err("[wakelocks_init]: platform_device_register failed/n");
goto err_platform_device_register;
}
ret = platform_driver_register(&power_driver);
if (ret) {
pr_err("[wakelocks_init]: platform_driver_register failed/n");
goto err_platform_driver_register;
}
// 新建工作队列和工作者内核线程: sys_sync_work_queue, fs_sync
// suspend_work_queue, suspend
sys_sync_work_queue = create_singlethread_workqueue("fs_sync");
if (sys_sync_work_queue == NULL) {
pr_err("[wakelocks_init] fs_sync workqueue create failed/n");
}
suspend_work_queue = create_singlethread_workqueue("suspend");
if (suspend_work_queue == NULL) {
ret = -ENOMEM;
goto err_suspend_work_queue;
}
#ifdef CONFIG_WAKELOCK_STAT
proc_create("wakelocks", S_IRUGO, NULL, &wakelock_stats_fops);
// 创建proc接口
#endif
return 0;
err_suspend_work_queue:
platform_driver_unregister(&power_driver);
err_platform_driver_register:
platform_device_unregister(&power_device);
err_platform_device_register:
wake_lock_destroy(&unknown_wakeup);
wake_lock_destroy(&main_wake_lock);
#ifdef CONFIG_WAKELOCK_STAT
wake_lock_destroy(&deleted_wake_locks);
#endif
return ret;
}
可以看到该初始化函数中新建了几个wakelock: deleted_wake_locks、main_wake_lock、sys_sync_wake_lock、unknown_wakeup,他们全部都是WAKE_LOCK_SUSPEND类型的wakelock,说到这里不得不提到wakelock的两种类型了:
1. WAKE_LOCK_SUSPEND – 这种锁如果被某个task持有,那么系统将无法进入休眠。
2. WAKE_LOCK_IDLE – 这种锁不会影响到系统进入休眠,但是如果这种锁被持有,那么系统将无法进入idle空闲模式。
不过常用的所类型还是WAKE_LOCK_SUSPEND,包括userwakelock.c提供给用户空间的新建wakelock的接口,都是建立的第一种锁。另外系统为了分开管理这两种不同类型的锁,建立了两个链表来统一链接不同类型的锁:active_wake_locks[],这个是具有两个链表头的数组,元素0是挂接WAKE_LOCK_SUSPEND类型的锁,而元素1就是挂接WAKE_LOCK_IDLE类型的wakelock了。
接着上面说,这个初始化函数新建这些锁之后,直接将主锁(main_wake_lock)给上锁了,其余都是非锁状态。新建wakelock使用函数wake_lock_init(),该函数设置锁的名字,类型,最后将新建的锁挂接到一个专门链接这些非锁状态的链表inactive_locks上(新建的wakelock初期都是出于非锁状态的,除非显示调用函数wake_lock来上锁)。接着如果使用函数wake_lock()来给特定的wakelock上锁的话,会将该锁从链表inactive_locks上移动到对应类型的专用链表上active_wake_locks[type]上。
wakelock有两种形式的锁:超时锁和非超时锁,这两种形式的锁都是使用函数wake_lock_init()来初始化,只是在上锁的时候会有一点点差别,超时锁使用函数wake_lock_timeout(),而非超时锁使用函数wake_lock(), 这个两个函数会最终调用到同一个函数wake_lock_internal(),该函数依靠传入的不同参数来选择不同的路径来工作。值得注意的是,非超时锁必须手工解锁,否则系统永远不能进入睡眠。下面是wake_lock_internal()函数的片段:
if (!(lock->flags & WAKE_LOCK_ACTIVE))
lock->flags |= WAKE_LOCK_ACTIVE;// wakelock状态为inactive,则更改为active
…
if (has_timeout) { // wake_lock_timeout()会传入1
if (wakelock_debug_mask & DEBUG_WAKE_LOCK)
pr_info("[wake_lock_internal]: %s, type %d, timeout %ld.%03lu/n",
lock->name, type, timeout / HZ,
(timeout % HZ) * MSEC_PER_SEC / HZ);
lock->expires = jiffies + timeout; // 设置超时时间
lock->flags |= WAKE_LOCK_AUTO_EXPIRE; // 超时锁标志
list_add_tail(&lock->link, &active_wake_locks[type]);
}
// acquire a non-timeout wakelock 添加一个非超时锁
else { // wake_lock ()会传入0
if (wakelock_debug_mask & DEBUG_WAKE_LOCK)
pr_info("[wake_lock_internal]: %s, type %d/n", lock->name, type);
lock->expires = LONG_MAX; // 设置成超时时间最大值
lock->flags &= ~WAKE_LOCK_AUTO_EXPIRE; // 非超时锁标志
list_add(&lock->link, &active_wake_locks[type]);
// 将刚刚设置的非超时锁加到对应类型的活动锁链表中
}
解锁的时候,这两种形式的锁所使用函数都是一样了:wake_unlock(),该函数中会首先作如下操作:
lock->flags &= ~(WAKE_LOCK_ACTIVE | WAKE_LOCK_AUTO_EXPIRE);
// 清除锁活动标志和自动超时标志
list_del(&lock->link); // 从锁对应的活动链表上摘除
list_add(&lock->link, &inactive_locks);
// 将unlock的锁挂接到非活动链表inactive_locks上
前面已经说了只有类型为WAKE_LOCK_SUSPEND的wakelock被上锁才会阻止系统进入suspend,那么也就是说只要链表active_wake_locks[WAKE_LOCK_SUSPEND]为NULL,那么系统就可以执行suspend的流程了。Android对linux的改造,让其可以在三种情况下进入linux的标准suspend的流程:
1. wake_unlock(),这个应该是最容易想到的,只要系统有对WAKE_LOCK_SUSPEND类型的wakelock解锁的动作,都有可能会进入suspend流程开始休眠,为什么是有可能呢?因为可能还有超时锁没有被超时解锁。下面看一下代码片段:
void wake_unlock(struct wake_lock *lock)
{
…
if (type == WAKE_LOCK_SUSPEND) // 貌似只在处理这个类型的wakelock
{
long has_lock = has_wake_lock_locked(type);
// 这个函数蛮重要,它来检查type类型的链表上是否还有锁被上锁了。
// 其返回值如果是0,说明没有该类型的锁被持有了;返回非0表明就是这个类型的活动链表上还存在超时锁但是没有非超时锁了,这个返回值就是当前时间距离最后超时的锁超时时间的jiffies值;如果返回-1,那表明还有该类型的非超时锁被持有。
if (wakelock_debug_mask & DEBUG_WAKE_LOCK)
pr_info("[wake_unlock]: has_lock = 0x%x/n" , has_lock);
if (has_lock > 0) {
if (wakelock_debug_mask & DEBUG_EXPIRE)
pr_info("[wake_unlock]: %s, start expire timer, "
"%ld/n", lock->name, has_lock);
mod_timer(&expire_timer, jiffies + has_lock);
// 修改定时器的超时值并add该定时器
}
else // 已经没有超时锁了
{
if (del_timer(&expire_timer)) // 删除定时器
if (wakelock_debug_mask & DEBUG_EXPIRE)
pr_info("[wake_unlock]: %s, stop expire "
"timer/n", lock->name);
if (has_lock == 0)
// !=0,表明还有该类型的非超时锁被持有,现在还不能进入suspend
{
pr_info("[wake_unlock]: (%s) suspend_work_queue suspend_work/n" , lock->name);
queue_work(suspend_work_queue, &suspend_work);
// 提交suspend的工作项,开始执行标准linux的suspend流程
}
}
…
}
spin_unlock_irqrestore(&list_lock, irqflags);
}
2. 超时锁超时之后,定时器的回调函数会执行会查看是否有其他的wakelock, 如果没有, 就在这里让系统进入睡眠。
static void expire_wake_locks(unsigned long data)
{
long has_lock;
unsigned long irqflags;
if (debug_mask & DEBUG_EXPIRE)
pr_info("expire_wake_locks: start/n");
spin_lock_irqsave(&list_lock, irqflags);
if (debug_mask & DEBUG_SUSPEND)
print_active_locks(WAKE_LOCK_SUSPEND);
has_lock = has_wake_lock_locked(WAKE_LOCK_SUSPEND);
if (debug_mask & DEBUG_EXPIRE)
pr_info("expire_wake_locks: done, has_lock %ld/n", has_lock);
if (has_lock == 0)
// 如果没有SUSPEND类型的wakelock处于active,那么将调用suspend
queue_work(suspend_work_queue, &suspend_work);
spin_unlock_irqrestore(&list_lock, irqflags);
}
static DEFINE_TIMER(expire_timer, expire_wake_locks, 0, 0);
列出以下一个重要的函数源码:
static long has_wake_lock_locked(int type)
{
struct wake_lock *lock, *n;
long max_timeout = 0;
BUG_ON(type >= WAKE_LOCK_TYPE_COUNT);
list_for_each_entry_safe(lock, n, &active_wake_locks[type], link) {
if (lock->flags & WAKE_LOCK_AUTO_EXPIRE) {
long timeout = lock->expires - jiffies;
if (timeout <= 0)
expire_wake_lock(lock);
else if (timeout > max_timeout)
max_timeout = timeout;
} else
return -1;
}
return max_timeout;
}
3. 这个可能有人觉得匪夷所思,就是在wake_lock{_ _timeout}()函数中,调用了内部函数wake_lock_internal()。这里只有在对超时锁上锁的时候才有可能进入休眠,如果对一个费超时锁上锁的话,那么就没有必要去检查活动链表了。
static void wake_lock_internal(
struct wake_lock *lock, long timeout, int has_timeout)
{
…
if (type == WAKE_LOCK_SUSPEND) {
current_event_num++;
#ifdef CONFIG_WAKELOCK_STAT
if (lock == &main_wake_lock)
update_sleep_wait_stats_locked(1);
else if (!wake_lock_active(&main_wake_lock))
update_sleep_wait_stats_locked(0);
#endif
if (has_timeout) // 超时锁的时候传进来的是1
expire_in = has_wake_lock_locked(type);
// 检查当前锁类型链表上是否还有锁处于active的状态,无返回0
else
expire_in = -1;
// 如果是非超时锁的话,这里直接赋值-1,省去了活动链表检查步骤了
if (expire_in > 0) {
if (debug_mask & DEBUG_EXPIRE)
pr_info("wake_lock: %s, start expire timer, "
"%ld/n", lock->name, expire_in);
// modify the time wakelock is expired
mod_timer(&expire_timer, jiffies + expire_in);
} else {
if (del_timer(&expire_timer))
if (debug_mask & DEBUG_EXPIRE)
pr_info("wake_lock: %s, stop expire timer/n",
lock->name);
if (expire_in == 0) // 没有锁处于active状态后,准备调用suspend了
{
pr_info("[wake_lock]: suspend_work_queue suspend_work/n ");
queue_work(suspend_work_queue, &suspend_work);
}
}
}
spin_unlock_irqrestore(&list_lock, irqflags);
}
下面是suspend的工作项,经过上面三种情况的检查,ok之后将会提交该工作项给工作队列suspend_work_queue,如下:
static void suspend(struct work_struct *work)
{
int ret;
int entry_event_num;
// there are still some wakelock
if (has_wake_lock(WAKE_LOCK_SUSPEND)) {
if (wakelock_debug_mask & DEBUG_SUSPEND)
pr_info("[suspend]: abort suspend/n");
return;
}
entry_event_num = current_event_num;
sys_sync();
if (debug_mask & DEBUG_SUSPEND)
pr_info("suspend: enter suspend/n");
ret = pm_suspend(requested_suspend_state);
// requested_suspend_state这个全局变量在函数request_suspend_state()中被设置,也就是执行了eraly suspend或者late resume之后,主要是为suspend保留请求的省电状态。
if (debug_mask & DEBUG_EXIT_SUSPEND) {
struct timespec ts;
struct rtc_time tm;
getnstimeofday(&ts);
rtc_time_to_tm(ts.tv_sec, &tm);
pr_info("suspend: exit suspend, ret = %d "
"(%d-%02d-%02d %02d:%02d:%02d.%09lu UTC)/n", ret,
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec, ts.tv_nsec);
}
if (current_event_num == entry_event_num) {
if (debug_mask & DEBUG_SUSPEND)
pr_info("suspend: pm_suspend returned with no event/n");
wake_lock_timeout(&unknown_wakeup, HZ / 2);
}
}
static DECLARE_WORK(suspend_work, suspend);
@kernel/kernel/power/suspend.c
int pm_suspend(suspend_state_t state)
{
if (state > PM_SUSPEND_ON && state <= PM_SUSPEND_MAX)
return enter_state(state);
// 标准linux的suspend流程函数
return -EINVAL;
}
EXPORT_SYMBOL(pm_suspend);
Wakelock的机制被文件userwakelock.c中的code封装成了sys的接口sys/power/wake_lock和sys/power/wake_unlock文件,那么上层如果需要新建wakelock或者注销wakelock,或者是解锁wakelock,都是操作这两个sys接口文件。
四、android层源码解析在linux之上经过android的软件堆层层封装,最终在上层的java应用程序中使用。休眠唤醒也是从最上层发出的命令,然后一层一层地将参数解析,往最底层传,最后走上标准linux的休眠唤醒之路。
这一部分将会初略分析休眠唤醒机制上linux之上所走的路线。
在linux之上,存在一个hal层,专门做和linux内核设备打交道的事情,这里也不例外。休眠唤醒机制的hal层源码位于:@hardware/libhardware_legacy/power/power.c
该文件源码比较简单,下面列举重点片段:
enum {
ACQUIRE_PARTIAL_WAKE_LOCK = 0,
RELEASE_WAKE_LOCK,
REQUEST_STATE,
OUR_FD_COUNT
};
constchar * const NEW_PATHS[] = {
"/sys/power/wake_lock",
"/sys/power/wake_unlock",
"/sys/power/state"
};
staticint g_initialized = 0;
staticint g_fds[OUR_FD_COUNT];
staticconst char *off_state = "mem";
staticconst char *on_state = "on";
staticint open_file_descriptors(const char * const paths[])
{
int i;
for (i=0; i<OUR_FD_COUNT; i++) {
int fd = open(paths[i], O_RDWR);
if (fd < 0) {
fprintf(stderr, "fatal error opening/"%s/"/n", paths[i]);
g_error = errno;
return -1;
}
g_fds[i] = fd;
}
g_error = 0;
return 0;
}
staticinline void initialize_fds(void)
{
if (g_initialized == 0) {
if(open_file_descriptors(NEW_PATHS) < 0) {
open_file_descriptors(OLD_PATHS);
on_state = "wake";
off_state = "standby";
}
g_initialized = 1;
}
}
int acquire_wake_lock(int lock, const char* id)
{
initialize_fds();
if(g_error) return g_error;
int fd;
if (lock == PARTIAL_WAKE_LOCK) { // 上层传下来的lock type
fd = g_fds[ACQUIRE_PARTIAL_WAKE_LOCK];
}
else {
return EINVAL;
}
return write(fd,id, strlen(id));
}
int release_wake_lock(const char* id)
{
initialize_fds();
// LOGI("release_wake_lock id='%s'/n", id);
if (g_error) return g_error;
ssize_t len = write(g_fds[RELEASE_WAKE_LOCK],id, strlen(id));
return len >= 0;
}
intset_screen_state(int on)
{
QEMU_FALLBACK(set_screen_state(on));
LOGI("*** set_screen_state %d", on);
initialize_fds();
if (g_error) return g_error;
char buf[32];
int len;
if(on)
len = sprintf(buf, on_state);
else
len = sprintf(buf, off_state);
len = write(g_fds[REQUEST_STATE],buf, len);
if(len < 0) {
LOGE("Failed setting last user activity:g_error=%d/n", g_error);
}
return 0;
}
Hal层的代码在jni层中被使用,源码位于:frameworks/base/core/jni/android_os_Power.cpp,代码片段如下:
staticvoid acquireWakeLock(JNIEnv *env, jobject clazz, jint lock, jstring idObj)
{
if (idObj == NULL) {
throw_NullPointerException(env, "id isnull");
return ;
}
const char *id = env->GetStringUTFChars(idObj,NULL);
acquire_wake_lock(lock, id);
env->ReleaseStringUTFChars(idObj, id);
}// 对wakelock加锁函数
staticvoid releaseWakeLock(JNIEnv*env, jobject clazz, jstring idObj)
{
if (idObj == NULL) {
throw_NullPointerException(env, "id isnull");
return ;
}
const char *id = env->GetStringUTFChars(idObj,NULL);
release_wake_lock(id);
env->ReleaseStringUTFChars(idObj, id);
}// 对wakelock解锁函数
staticint setScreenState(JNIEnv *env, jobject clazz, jboolean on)
{
return set_screen_state(on);
}// 休眠唤醒的函数
Jni的方法需要注册到上层才可以使用,同时也需要在上层的对应java类中声明了native才可以使用。那么这里的方法在java中对应的声明在哪里呢?frameworks/base/core/java/android/os/Power.java,该文件定义一个java类,如下:
publicclass Power
{
// can't instantiate this class
private Power()
{
}
/**
* Wake lock that ensures that the CPU isrunning. The screen might
* not be on.
*/
public static final int PARTIAL_WAKE_LOCK = 1;
/**
* Wake lock that ensures that the screen is on.
*/
public static final int FULL_WAKE_LOCK = 2;
public static native void acquireWakeLock(int lock, String id);
public static native void releaseWakeLock(String id);
…
/**
* Turn the screen on or off
*
* @param on Whether you want the screen on or off
*/
public static native int setScreenState(boolean on);
…
}
声明的jni接口应该是被javaserver在使用,这里就是专门的电源管理服务:PowerManagerService使用,具体源码位置在:frameworks/base/services/java/com/android/server/PowerManagerService.java。android在最上层还提供了现场的android.os.PowerManager类
(frameworks/base/core/java/android/os/PowerManager.java)来供app使用,PowerManager类会调用java服务PowerManagerService的方法来完成与wakelock相关的工作。
@frameworks/base/core/java/android/os/PowerManager.java
类PowerManager中内嵌了一个WakeLock类,另外还定义了wakelock的类型,下面是代码片段:
public class PowerManager
{
private static final String TAG = "PowerManager";
…
/**
* Wake lock that ensures that the CPU isrunning. The screen might
* not be on.
*/
public static final int PARTIAL_WAKE_LOCK = WAKE_BIT_CPU_STRONG;
/**
* Wake lock that ensures that the screen and keyboardare on at
* full brightness.
*/
public static final int FULL_WAKE_LOCK = WAKE_BIT_CPU_WEAK| WAKE_BIT_SCREEN_BRIGHT | WAKE_BIT_KEYBOARD_BRIGHT;
/**
* Wake lock that ensures that the screen is on at fullbrightness;
* the keyboard backlight will be allowed to go off.
*/
public static final int SCREEN_BRIGHT_WAKE_LOCK = WAKE_BIT_CPU_WEAK| WAKE_BIT_SCREEN_BRIGHT;
/**
* Wake lock that ensures that the screen is on (butmay be dimmed);
* the keyboard backlight will be allowed to go off.
*/
public static final int SCREEN_DIM_WAKE_LOCK = WAKE_BIT_CPU_WEAK| WAKE_BIT_SCREEN_DIM;
/**
* Wake lock that turns the screen off when theproximity sensor activates.
* Since not all devices have proximity sensors, use
* {@link #getSupportedWakeLockFlags()getSupportedWakeLockFlags()} to determine if
* this wake lock mode is supported.
*
* {@hide}
*/
publicstatic final int PROXIMITY_SCREEN_OFF_WAKE_LOCK
=WAKE_BIT_PROXIMITY_SCREEN_OFF;
…
public class WakeLock
{
…
WakeLock(int flags, String tag)
{
switch (flags & LOCK_MASK) {
case PARTIAL_WAKE_LOCK:
case SCREEN_DIM_WAKE_LOCK:
case SCREEN_BRIGHT_WAKE_LOCK:
case FULL_WAKE_LOCK:
case PROXIMITY_SCREEN_OFF_WAKE_LOCK:
break;
default:
throw new IllegalArgumentException();
}
mFlags = flags;
mTag = tag;
mToken = new Binder();
}
public void acquire()
{
synchronized (mToken) {
if (!mRefCounted || mCount++ == 0) {
try {
mService.acquireWakeLock(mFlags, mToken, mTag);
} catch (RemoteException e) {
}
mHeld = true;
}
}
}
public void release(int flags)
{
synchronized (mToken) {
if (!mRefCounted || --mCount == 0) {
try {
mService.releaseWakeLock(mToken, flags);
} catch (RemoteException e) {
}
mHeld = false;
}
if (mCount < 0) {
throw new RuntimeException("WakeLock under-locked" + mTag);
}
}
}
…
}
…
publicWakeLock newWakeLock(int flags, String tag)
{
if (tag == null) {
throw new NullPointerException("tag is
null in PowerManager.newWakeLock");
}
return new WakeLock(flags, tag);
}
public void goToSleep(long time)
{
try {
mService.goToSleep(time);
} catch (RemoteException e) {
}
}
…
publicPowerManager(IPowerManager service, Handler handler)
{
mService = service;
mHandler = handler;
}
IPowerManager mService;
Handler mHandler;
}
应用实例:
PowerManager pm =(PowerManager)getSystemService(Context.POWER_SERVICE);
PowerManager.WakeLock wl =
pm.newWakeLock(PowerManager.SCREEN_DIM_WAKE_LOCK,“Tag”);
wl.acquire(); //申请锁这个里面会调用PowerManagerService里面acquireWakeLock()
…
wl.release(); //释放锁,显示的释放,如果申请的锁不在此释放系统就不会进入休眠。
接下来就会调用到java服务PowerManagerService中:
public void acquireWakeLock(int flags, IBinder lock, String tag) {
int uid = Binder.getCallingUid();
if (uid != Process.myUid()) {
mContext.enforceCallingOrSelfPermission(android.Manifest.permission.WAKE_LOCK,null);
}
long ident = Binder.clearCallingIdentity();
try {
synchronized (mLocks) {
acquireWakeLockLocked(flags, lock, uid,tag); // 内部方法
}
} finally {
Binder.restoreCallingIdentity(ident);
}
}
acquireWakeLockLocked(flags,lock, uid, tag)会调用函数power类的方法:
Power.acquireWakeLock(Power.PARTIAL_WAKE_LOCK,PARTIAL_NAME)。
public void releaseWakeLock(IBinder lock, int flags) {
int uid = Binder.getCallingUid();
if (uid != Process.myUid()) {
mContext.enforceCallingOrSelfPermission(android.Manifest.permission.WAKE_LOCK,null);
}
synchronized (mLocks) {
releaseWakeLockLocked(lock, flags, false);
}
}
releaseWakeLockLocked(lock,flags, false)函数会调用power类的方法:
Power.releaseWakeLock(PARTIAL_NAME);
上层休眠唤醒都是调用PowerManagerService类的方法:
goToSleep()
à goToSleepWithReason()
à goToSleepLocked()
à setPowerState()
à setScreenStateLocked()
à Power.setScreenState()
à jni方法
Android层的代码分析得不是很详细,这里只关注框架和流程。下图是网上的一个框架,可以参考一下:
最后
以上就是谨慎向日葵为你收集整理的Android在标准linux基础上对休眠唤醒的实现的全部内容,希望文章能够帮你解决Android在标准linux基础上对休眠唤醒的实现所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复