我是靠谱客的博主 忧伤黄蜂,最近开发中收集的这篇文章主要介绍数据库软件架构设计些什么,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

一、基本概念

二、数据库架构设计思路

(1)可用性

(2)读性能

(3)一致性

(4)扩展性

 


一、基本概念

概念一“单库”

 

概念二“分片”


分片解决的是“数据量太大”的问题,也就是通常说的“水平切分”。

一旦引入分片,势必有“数据路由”的概念,哪个数据访问哪个库。

 

路由规则通常有3种方法:

(1)范围:range

优点:简单,容易扩展

缺点:各库压力不均(新号段更活跃)

(2)哈希:hash

优点:简单,数据均衡,负载均匀

缺点:迁移麻烦(2库扩3库数据要迁移)

(3)路由服务:router-config-server

优点:灵活性强,业务与路由算法解耦

缺点:每次访问数据库前多一次查询

 

大部分互联网公司采用的方案二:哈希分库,哈希路由

 

概念三“分组”


分组解决“可用性”问题,分组通常通过主从复制的方式实现。

 

互联网公司数据库实际软件架构是:又分片,又分组(如下图)

 


二、数据库架构设计思路

数据库软件架构师平时设计些什么东西呢?至少要考虑以下四点:

(1)如何保证数据可用性

(2)如何提高数据库读性能(大部分应用读多写少,读会先成为瓶颈)

(3)如何保证一致性

(4)如何提高扩展性


2.1如何保证数据的可用性?

解决可用性问题的思路是=>冗余

如何保证站点的可用性?复制站点,冗余站点

如何保证服务的可用性?复制服务,冗余服务

如何保证数据的可用性?复制数据,冗余数据

 

数据的冗余,会带来一个副作用=>引发一致性问题(先不说一致性问题,先说可用性)

 

如何保证数据库“读”高可用?

冗余读库


冗余读库带来的副作用?读写有延时,可能不一致

上面这个图是很多互联网公司mysql的架构,写仍然是单点,不能保证写高可用。

 

如何保证数据库“写”高可用?

冗余写库


采用双主互备的方式,可以冗余写库

带来的副作用?双写同步,数据可能冲突(例如“自增id”同步冲突),如何解决同步冲突,有两种常见解决方案:

(1)两个写库使用不同的初始值,相同的步长来增加id:1写库的id为0,2,4,6...;2写库的id为1,3,5,7…

(2)不使用数据的id,业务层自己生成唯一的id,保证数据不冲突

 

58同城没有使用上述两种架构来做读写的“高可用”,58同城采用的是“双主当主从用”的方式


仍是双主,但只有一个主提供服务(读+写),另一个主是“shadow-master”,只用来保证高可用,平时不提供服务。

master挂了,shadow-master顶上(vip漂移,对业务层透明,不需要人工介入)

这种方式的好处:

1)读写没有延时

2)读写高可用

不足:

1)不能通过加从库的方式扩展读性能

2)资源利用率为50%,一台冗余主没有提供服务

 

那如何提高读性能呢?进入第二个话题,如何提供读性能。


2.2如何扩展读性能?

提高读性能的方式大致有三种,第一种是建立索引。这种方式不展开,要提到的一点是,不同的库可以建立不同的索引


写库不建立索引;

线上读库建立线上访问索引,例如uid;

线下读库建立线下访问索引,例如time;

 

第二种扩充读性能的方式是,增加从库,这种方法大家用的比较多,但是,存在两个缺点:

(1)从库越多,同步越慢

(2)同步越慢,数据不一致窗口越大(不一致后面说,还是先说读性能的提高)

 

58同城没有采用这种方法提高数据库读性能(没有从库),采用的是增加缓存。常见的缓存架构如下:


上游是业务应用,下游是主库,从库(读写分离),缓存。

 

58同城的玩法是:服务+数据库+缓存一套


业务层不直接面向db和cache,服务层屏蔽了底层db、cache的复杂性。为什么要引入服务层,今天不展开,58采用了“服务+数据库+缓存一套”的方式提供数据访问,用cache提高读性能。

 

不管采用主从的方式扩展读性能,还是缓存的方式扩展读性能,数据都要复制多份(主+从,db+cache),一定会引发一致性问题。


2.3如何保证一致性?

主从数据库的一致性,通常有两种解决方案:

(1)中间件


如果某一个key有写操作,在不一致时间窗口内,中间件会将这个key的读操作也路由到主库上。

这个方案的缺点是,数据库中间件的门槛较高(百度,腾讯,阿里,360等一些公司有,当然58也有)

(2)强制读主


58的“双主当主从用”的架构,不存在主从不一致的问题。

 

第二类不一致,是db与缓存间的不一致


常见的缓存架构如上,此时写操作的顺序是:

(1)淘汰cache

(2)写数据库

读操作的顺序是:

(1)读cache,如果cache hit则返回

(2)如果cache miss,则读从库

(3)读从库后,将数据放回cache

 

在一些异常时序情况下,有可能从【从库读到旧数据(同步还没有完成),旧数据入cache后】,数据会长期不一致。

 

解决办法是“缓存双淘汰”,写操作时序升级为:

(1)淘汰cache

(2)写数据库

(3)在经验“主从同步延时窗口时间”后,再次发起一个异步淘汰cache的请求

 

这样,即使有脏数据如cache,一个小的时间窗口之后,脏数据还是会被淘汰。带来的代价是,多引入一次读miss(成本可以忽略)。

 

除此之外,58同城的最佳实践之一是:建议为所有cache中的item设置一个超时时间。

 

说完一致性,最后一个话题是扩展性。


2.4如何提高数据库的扩展性?

原来用hash的方式路由,分为2个库,数据量还是太大,要分为3个库,势必需要进行数据迁移,58同城有一个很帅气的“数据库秒级扩容”方案。(悄悄的说,秒级有些吹牛逼,实际操作的时候还是需要费些时间的,不过这确实是个很好的方案。)

如何秒级扩容?

首先,我们不做2库变3库的扩容,我们做2库变4库(库加倍)的扩容(未来4->8->16)

服务+数据库是一套(省去了缓存)

数据库采用“双主”的模式。

 

扩容步骤:

第一步,将一个主库提升

第二步,修改配置,2库变4库(原来MOD2,现在配置修改后MOD4)

扩容完成

原MOD2为偶的部分,现在会MOD4余0或者2

原MOD2为奇的部分,现在会MOD4余1或者3

数据不需要迁移,同时,双主互相同步,一遍是余0,一边余2,两边数据同步也不会冲突,秒级完成扩容!

 

最后,要做一些收尾工作:

(1)将旧的双主同步解除

(2)增加新的双主(双主是保证可用性的,shadow-master平时不提供服务)

(3)删除多余的数据(余0的主,可以将余2的数据删除掉)


这样,秒级别内,我们就完成了2库变4库的扩展。


OK,今天主要分享了58同城,数据库软件架构上:

(1)如何保证数据可用性

(2)如何提高数据库读性能

(3)如何保证数据一致性

(4)如何进行秒级扩容

关注微信公众号和今日头条,精彩文章持续更新中。。。。。

 

最后

以上就是忧伤黄蜂为你收集整理的数据库软件架构设计些什么的全部内容,希望文章能够帮你解决数据库软件架构设计些什么所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(68)

评论列表共有 0 条评论

立即
投稿
返回
顶部