概述
可以离线识别,但是暂时只有一个小的语音库,识别准确率特别低。
如果谁有训练语音库的方法希望可以分享一下。谢谢!
springboot框架搭的一个小demo。
原文地址还有前端页面html和js,有录音,播放,翻译等小功能,详情见下边原文地址。
package com.example.gadgets.yysb;
import com.alibaba.fastjson.JSONObject;
import com.sun.media.sound.WaveFileReader;
import com.sun.media.sound.WaveFileWriter;
import org.springframework.util.Assert;
import org.springframework.util.StringUtils;
import org.vosk.LibVosk;
import org.vosk.LogLevel;
import org.vosk.Model;
import org.vosk.Recognizer;
import javax.sound.sampled.*;
import java.io.*;
import java.nio.file.Files;
import java.nio.file.Paths;
public class VoiceUtil {
//模型的地址,需要去官网下载:https://alphacephei.com/vosk/models,这里选择的是Chinese里的vosk-model-small-cn-0.22 微型版本
//经测试,微型版本转化准确率30%左右。如果语言不清楚,可能更低。明天下载个大的包试一下
private static String VOSKMODELPATH = "D:/yuyinshibie/vosk-model-small-cn-0.22";
public static String getWord(String filePath) throws IOException, UnsupportedAudioFileException {
Assert.isTrue(StringUtils.hasLength(VOSKMODELPATH), "无效的VOS模块!");
byte[] bytes = Files.readAllBytes(Paths.get(filePath));
// 转换为16KHZ
reSamplingAndSave(bytes, filePath);
File f = new File(filePath);
RandomAccessFile rdf = null;
rdf = new RandomAccessFile(f, "r");
System.out.println("声音尺寸:{}"+ toInt(read(rdf, 4, 4)));
System.out.println("音频格式:{}"+ toShort(read(rdf, 20, 2)));
short track=toShort(read(rdf, 22, 2));
System.out.println("1 单声道 2 双声道: {}"+ track);
System.out.println("采样率、音频采样级别 16000 = 16KHz: {}"+ toInt(read(rdf, 24, 4)));
System.out.println("每秒波形的数据量:{}"+ toShort(read(rdf, 22, 2)));
System.out.println("采样帧的大小:{}"+ toShort(read(rdf, 32, 2)));
System.out.println("采样位数:{}"+ toShort(read(rdf, 34, 2)));
rdf.close();
LibVosk.setLogLevel(LogLevel.WARNINGS);
try (Model model = new Model(VOSKMODELPATH);
InputStream ais = AudioSystem.getAudioInputStream(new BufferedInputStream(new FileInputStream(filePath)));
// 采样率为音频采样率的声道倍数
Recognizer recognizer = new Recognizer(model, 16000*track)) {
int nbytes;
byte[] b = new byte[4096];
int i = 0;
while ((nbytes = ais.read(b)) >= 0) {
i += 1;
if (recognizer.acceptWaveForm(b, nbytes)) {
// System.out.println(recognizer.getResult());
} else {
// System.out.println(recognizer.getPartialResult());
}
}
String result = recognizer.getFinalResult();
System.out.println("识别结果:{}"+ result);
if (StringUtils.hasLength(result)) {
JSONObject jsonObject = JSONObject.parseObject(result);
return jsonObject.getString("text").replace(" ", "");
}
return "";
}
}
public static int toInt(byte[] b) {
return (((b[3] & 0xff) << 24) + ((b[2] & 0xff) << 16) + ((b[1] & 0xff) << 8) + ((b[0] & 0xff) << 0));
}
public static short toShort(byte[] b) {
return (short) ((b[1] << 8) + (b[0] << 0));
}
public static byte[] read(RandomAccessFile rdf, int pos, int length) throws IOException {
rdf.seek(pos);
byte result[] = new byte[length];
for (int i = 0; i < length; i++) {
result[i] = rdf.readByte();
}
return result;
}
public static void reSamplingAndSave(byte[] data, String path) throws IOException, UnsupportedAudioFileException {
WaveFileReader reader = new WaveFileReader();
AudioInputStream audioIn = reader.getAudioInputStream(new ByteArrayInputStream(data));
AudioFormat srcFormat = audioIn.getFormat();
int targetSampleRate = 16000;
AudioFormat dstFormat = new AudioFormat(srcFormat.getEncoding(),
targetSampleRate,
srcFormat.getSampleSizeInBits(),
srcFormat.getChannels(),
srcFormat.getFrameSize(),
srcFormat.getFrameRate(),
srcFormat.isBigEndian());
AudioInputStream convertedIn = AudioSystem.getAudioInputStream(dstFormat, audioIn);
File file = new File(path);
WaveFileWriter writer = new WaveFileWriter();
writer.write(convertedIn, AudioFileFormat.Type.WAVE, file);
}
public static void main(String[] args) {
String path = "D:/yuyinshibie/test456.wav";
File localFile = new File(path);
try {
//开始解析
String text = getWord(path);
System.out.println("text:"+text);
localFile.delete();
} catch (IOException | UnsupportedAudioFileException e) {
e.printStackTrace();
localFile.delete();
}
}
}
原文:java 离线中文语音文字识别 - Rolay - 博客园转载注明出处:https://www.cnblogs.com/rolayblog/p/15237099.html 项目需要,要实现类似小爱同学的语音控制功能,并且要离线,不能花公司一分钱。第一步就是需https://www.cnblogs.com/rolayblog/p/15237099.html
最后
以上就是羞涩钥匙为你收集整理的JAVA开发离线语音识别的全部内容,希望文章能够帮你解决JAVA开发离线语音识别所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复