概述
文章目录
- 1. 什么是数据分析
- 2.应该怎么学
- 3. 数据分析思维
- 3.1 三种核心思维
- 3.1.1 结构化
- 3.1.2 公式化
- 3.1.3 业务化
- 3.2 数据分析的思维技巧
- 3.3 数据分析思维九段路线图
- 3.3.1 初段:目标思维
- 3.3.2 二段:对比思维
- 3.3.3 三段:细分思维
- 3.3.4 四段:溯源思维
- 3.3.5 五段:相关思维
- 3.3.6 六段:假设思维
- 3.3.7 七段:逆向思维
- 3.3.8 八段:演绎思维
- 3.3.9 九段:归纳思维
- 3.4 如何在业务时间数据分析思维
1. 什么是数据分析
把用户需求转换为产品。
2.应该怎么学
3. 数据分析思维
3.1 三种核心思维
3.1.1 结构化
结构化不是完美的!!!
3.1.2 公式化
3.1.3 业务化
3.2 数据分析的思维技巧
象限法:
多维法
统计学中的辛普森悖论
假设法
指数法
线性加权:用户价值=用户忠诚度等的加权
反比例:用户忠诚度=1-k/购买次数
log:变化趋势变缓
二八法
对比法
漏斗法
3.3 数据分析思维九段路线图
3.3.1 初段:目标思维
做数据分析,首先要一定明确目标,以终为始。
只有明确目标,才不会迷失方向,就像导航软件,如果没有设置目的地,那么它是没法告诉你路线图的。
目标思维主要体现在以下 3 个方面:
(1)正确地定义问题
比如说,小明听了煎饼大妈月入 3 万的故事,心里就想:为什么煎饼大妈月入 3 万?
这个问题的定义,应该是关注「月入 3 万」,而不是「煎饼大妈」。
也就是说,小明想的应该是「如何实现月入 3 万」,而不是「如何变成煎饼大妈」。
(2)合理地分解问题
比如说,煎饼大妈如何实现月收入 3 万?
这是一个比较大的问题,可以进行细分,因为收入等于订单数乘以客单价,所以把这个问题细分为两个小问题:
a. 如何实现一个月卖 5000 个煎饼?
b. 如何实现平均每个煎饼卖 6 块钱?
(3)抓住关键的问题
在不同的发展阶段,关键问题是不一样的。
比如说,对煎饼大妈来讲,刚开始做的时候,关键问题是:如何选择人流量大的好地段?
当选好地段之后,关键问题就变成:如何提高路人来购买的概率?如何提高客单价?如何提高重复购买率?
总之,数据分析的目标,就好比枪上的瞄准器,如果没有瞄准器,枪照样可以打,但是有了瞄准器,枪才可以打的更准。
3.3.2 二段:对比思维
在数据分析中,没有对比,就没有结论。
比如说,小明某次期末考试的成绩不好,英语只得了 30 分,小明的妈妈对他说:“你上次考试英语考了 70 分,这次怎么就考得这么差?你看你的同班同学,这次都考 80 分以上。”
常见的对比思维有以下 5 种:
(1)跟目标对比
(2)跟上个月比
(3)跟去年同比
(4)分渠道对比
(5)跟同类对比
数据分析的过程,就是在明确目标之后,通过对比等思维,找到问题的原因,得出分析的结论,提出可行的建议,从而起到帮助决策和指导行动的作用。
3.3.3 三段:细分思维
在数据分析中,细分是数据分析的灵魂,无细分,毋宁死。
比如说,小明某次考试的总成绩不好,细分一看,发现其他科目的成绩都不错,只有英语成绩特别差,只得了 30 分,从而拉低了整体的成绩。
常见的细分方法有以下 5 种:
(1)按时间细分
(2)按空间细分
(3)按过程细分
(4)按公式细分
(5)按模型细分
在运用细分思维解决问题的过程中,要做到有的放矢,围绕数据分析的目标,找到合适的方法,不要像无头苍蝇一样到处乱撞。
当发现数据异常时,尝试从不同的维度进行细分,这样既能锻炼你的数据分析思维,又能加深你对业务的理解。
3.3.4 四段:溯源思维
做数据分析的时候,要多问几个为什么,追根溯源,在数据源寻找可能隐藏的逻辑关系和解决方案。
如果你经常运用溯源思维,就能提升数据的敏感度,并加深对业务的理解。
3.3.5 五段:相关思维
相关思维,就是寻找变量之间相互关联的程度。
比如常被用来分析关联规则的啤酒和尿布的事件,要学会分析事件之间的关联。
如果一个变量改变时,另一个变量也朝着相同的方向改变,那我们就说这两个变量之间存在正相关性。
运用相关思维,通常包括以下 3 个步骤:
(1)收集相关数据
(2)绘制散点图形
(3)计算相关系数
需要注意的是,相关不等于因果。即使两个变量之间相关,也不代表其中一个变量的改变,是由另一个变量的变化引起的。
比如说,国家的诺贝尔奖数量,与巧克力消费量之间呈现正相关关系,但这并不是说,多吃巧克力有助于获得更多的诺贝尔奖。
一种合理的解释是,诺贝尔奖的数量与巧克力的消费量,很可能都是由其他变量导致的,例如国民的受教育程度和富裕程度。
3.3.6 六段:假设思维
大胆假设,小心求证。
这句话非常适合用在数据分析领域。
大胆假设,就是要打破既有观念的束缚,挣破旧有思想的牢笼,大胆创新,对未解决的问题提出新的假设。
小心求证,就是基于上面的假设,用一种严谨务实的态度,寻找真相,不能有半点马虎。
比如说,有一天小明去买水果,跟卖水果的阿姨说:
“阿姨,你这桔子甜不甜?”
阿姨:“甜啊,不信你试试。”
小明:“好,那我试一个。”
小明剥开一个桔子,尝了一口说:
“嗯,不错,确实挺甜的,给我称两斤。”
运用假设思维,通常包括以下 3 个步骤:
(1)提出假设
(2)统计检验
(3)做出判断
大胆假设并非绝对可靠,但是通过小心求证,我们可以更好地认识世界上的许多现象,从而得出更有价值的分析结论。
3.3.7 七段:逆向思维
到了七段,你已经具备比较丰富的数据分析经验,此时如果想要进一步有所突破,就得打破常规,具有逆向思维的能力。
比如说,有一天小明去买西红柿:“阿姨,你这西红柿多少钱一斤?”
阿姨:“两块五。”
小明挑了 3 个放到秤盘:“阿姨,帮我称一下。”
阿姨:“一斤半,3 块 7 毛。”
小明去掉其中最大的西红柿:“做汤不用那么多。”
阿姨:“一斤二两,3 块。”
小明拿起刚刚去掉的那个最大的西红柿,付了 7 毛钱,扭头就走了。
你看,本来是阿姨想占小明的便宜,虚报重量。但是,小明利用逆向思维,反而让阿姨吃了哑巴亏。
常见的逆向思维有以下 5 种:
(1)结构逆向
(2)功能逆向
(3)状态逆向
(4)原理逆向
(5)方法逆向
理解这些逆向的方法,有助于你打开数据分析的思路,不断提升自己的可迁移能力,尤其是底层的思维能力,做到以不变应万变。
3.3.8 八段:演绎思维
演绎思维的方向是由一般到个别,主要形式是「三段论」,由大前提、小前提、结论三部分组成。
比如说,小明不仅知道:金属都能导电;而且知道:铜是一种金属;所以小明可以得出结论:铜能导电。
运用演绎思维,应该遵循 5 项基本原则:
(1)不要出现第四个概念
(2)中项要能向外延伸
(3)大项和小项都不能扩大
(4)前提都为否,结论不必然
(5)前提有一否,结论必为否
掌握以上基本原则,能帮你建立更加严谨的数据分析思维。
3.3.9 九段:归纳思维
归纳思维的方向与演绎正好相反,归纳的过程是从个别到一般。
比如说,小明先知道:金、银、铜、铁等金属分别能导电,然后归纳出一个结论:所有金属都能导电。
这个过程,是先接触到个别事物,然后再进行归纳总结。
常见的归纳方法有以下 5 种:
(1)求同法
(2)求异法
(3)共用法
(4)共变法
(5)剩余法
这些方法是我们获取新知识的重要途径,不过需要注意的是,很多案例和故事都说明,有限的观察并不等于真理。
为了避免以偏概全,我们还要加强归纳思维的训练,积累更多实战的经验,这样归纳总结出来的结论,才能经得起时间的考验,才会更有现实意义。
通过归纳总结,得出有价值的分析结论,这既是数据分析的终点,也是数据分析的起点,形成一个正向的循环系统。
3.4 如何在业务时间数据分析思维
好奇心
参考链接:(秦路)七周成为数据分析师(第一周)
数据分析思维九段路线图
最后
以上就是风趣水蜜桃为你收集整理的(秦路)七周成为数据分析师(第一周)—— 数据分析思维1. 什么是数据分析2.应该怎么学3. 数据分析思维的全部内容,希望文章能够帮你解决(秦路)七周成为数据分析师(第一周)—— 数据分析思维1. 什么是数据分析2.应该怎么学3. 数据分析思维所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复