我是靠谱客的博主 风趣水蜜桃,最近开发中收集的这篇文章主要介绍(秦路)七周成为数据分析师(第一周)—— 数据分析思维1. 什么是数据分析2.应该怎么学3. 数据分析思维,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

文章目录

  • 1. 什么是数据分析
  • 2.应该怎么学
  • 3. 数据分析思维
    • 3.1 三种核心思维
      • 3.1.1 结构化
      • 3.1.2 公式化
      • 3.1.3 业务化
    • 3.2 数据分析的思维技巧
    • 3.3 数据分析思维九段路线图
      • 3.3.1 初段:目标思维
      • 3.3.2 二段:对比思维
      • 3.3.3 三段:细分思维
      • 3.3.4 四段:溯源思维
      • 3.3.5 五段:相关思维
      • 3.3.6 六段:假设思维
      • 3.3.7 七段:逆向思维
      • 3.3.8 八段:演绎思维
      • 3.3.9 九段:归纳思维
    • 3.4 如何在业务时间数据分析思维

1. 什么是数据分析

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
把用户需求转换为产品。
在这里插入图片描述
在这里插入图片描述

2.应该怎么学

在这里插入图片描述
在这里插入图片描述

3. 数据分析思维

在这里插入图片描述
在这里插入图片描述

3.1 三种核心思维

3.1.1 结构化

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
结构化不是完美的!!!

3.1.2 公式化

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.1.3 业务化

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2 数据分析的思维技巧

在这里插入图片描述
在这里插入图片描述
象限法:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
多维法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
统计学中的辛普森悖论
在这里插入图片描述
在这里插入图片描述
假设法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
指数法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
线性加权:用户价值=用户忠诚度等的加权
反比例:用户忠诚度=1-k/购买次数
log:变化趋势变缓
在这里插入图片描述

二八法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
对比法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
漏斗法
在这里插入图片描述
在这里插入图片描述

3.3 数据分析思维九段路线图

在这里插入图片描述

3.3.1 初段:目标思维

做数据分析,首先要一定明确目标,以终为始

只有明确目标,才不会迷失方向,就像导航软件,如果没有设置目的地,那么它是没法告诉你路线图的。

目标思维主要体现在以下 3 个方面:
(1)正确地定义问题

比如说,小明听了煎饼大妈月入 3 万的故事,心里就想:为什么煎饼大妈月入 3 万?

这个问题的定义,应该是关注「月入 3 万」,而不是「煎饼大妈」。

也就是说,小明想的应该是「如何实现月入 3 万」,而不是「如何变成煎饼大妈」。

(2)合理地分解问题

比如说,煎饼大妈如何实现月收入 3 万?

这是一个比较大的问题,可以进行细分,因为收入等于订单数乘以客单价,所以把这个问题细分为两个小问题:

a. 如何实现一个月卖 5000 个煎饼?

b. 如何实现平均每个煎饼卖 6 块钱?

(3)抓住关键的问题

在不同的发展阶段,关键问题是不一样的。

比如说,对煎饼大妈来讲,刚开始做的时候,关键问题是:如何选择人流量大的好地段?

当选好地段之后,关键问题就变成:如何提高路人来购买的概率?如何提高客单价?如何提高重复购买率?

总之,数据分析的目标,就好比枪上的瞄准器,如果没有瞄准器,枪照样可以打,但是有了瞄准器,枪才可以打的更准。

3.3.2 二段:对比思维

在数据分析中,没有对比,就没有结论。

比如说,小明某次期末考试的成绩不好,英语只得了 30 分,小明的妈妈对他说:“你上次考试英语考了 70 分,这次怎么就考得这么差?你看你的同班同学,这次都考 80 分以上。”

常见的对比思维有以下 5 种:

(1)跟目标对比

(2)跟上个月比

(3)跟去年同比

(4)分渠道对比

(5)跟同类对比

数据分析的过程,就是在明确目标之后,通过对比等思维,找到问题的原因,得出分析的结论,提出可行的建议,从而起到帮助决策和指导行动的作用。

3.3.3 三段:细分思维

在数据分析中,细分是数据分析的灵魂,无细分,毋宁死。

比如说,小明某次考试的总成绩不好,细分一看,发现其他科目的成绩都不错,只有英语成绩特别差,只得了 30 分,从而拉低了整体的成绩。

常见的细分方法有以下 5 种:

(1)按时间细分

(2)按空间细分

(3)按过程细分

(4)按公式细分

(5)按模型细分

在运用细分思维解决问题的过程中,要做到有的放矢,围绕数据分析的目标,找到合适的方法,不要像无头苍蝇一样到处乱撞。

当发现数据异常时,尝试从不同的维度进行细分,这样既能锻炼你的数据分析思维,又能加深你对业务的理解。

3.3.4 四段:溯源思维

做数据分析的时候,要多问几个为什么,追根溯源,在数据源寻找可能隐藏的逻辑关系和解决方案。

如果你经常运用溯源思维,就能提升数据的敏感度,并加深对业务的理解。

3.3.5 五段:相关思维

相关思维,就是寻找变量之间相互关联的程度。

比如常被用来分析关联规则的啤酒和尿布的事件,要学会分析事件之间的关联。

如果一个变量改变时,另一个变量也朝着相同的方向改变,那我们就说这两个变量之间存在正相关性。

运用相关思维,通常包括以下 3 个步骤:

(1)收集相关数据

(2)绘制散点图形

(3)计算相关系数

需要注意的是,相关不等于因果。即使两个变量之间相关,也不代表其中一个变量的改变,是由另一个变量的变化引起的。

比如说,国家的诺贝尔奖数量,与巧克力消费量之间呈现正相关关系,但这并不是说,多吃巧克力有助于获得更多的诺贝尔奖。

一种合理的解释是,诺贝尔奖的数量与巧克力的消费量,很可能都是由其他变量导致的,例如国民的受教育程度和富裕程度。

3.3.6 六段:假设思维

大胆假设,小心求证。

这句话非常适合用在数据分析领域。

大胆假设,就是要打破既有观念的束缚,挣破旧有思想的牢笼,大胆创新,对未解决的问题提出新的假设。

小心求证,就是基于上面的假设,用一种严谨务实的态度,寻找真相,不能有半点马虎。

比如说,有一天小明去买水果,跟卖水果的阿姨说:

“阿姨,你这桔子甜不甜?”

阿姨:“甜啊,不信你试试。”

小明:“好,那我试一个。”

小明剥开一个桔子,尝了一口说:

“嗯,不错,确实挺甜的,给我称两斤。”

运用假设思维,通常包括以下 3 个步骤:

(1)提出假设

(2)统计检验

(3)做出判断

大胆假设并非绝对可靠,但是通过小心求证,我们可以更好地认识世界上的许多现象,从而得出更有价值的分析结论。

3.3.7 七段:逆向思维

到了七段,你已经具备比较丰富的数据分析经验,此时如果想要进一步有所突破,就得打破常规,具有逆向思维的能力。

比如说,有一天小明去买西红柿:“阿姨,你这西红柿多少钱一斤?”

阿姨:“两块五。”

小明挑了 3 个放到秤盘:“阿姨,帮我称一下。”

阿姨:“一斤半,3 块 7 毛。”

小明去掉其中最大的西红柿:“做汤不用那么多。”

阿姨:“一斤二两,3 块。”

小明拿起刚刚去掉的那个最大的西红柿,付了 7 毛钱,扭头就走了。

你看,本来是阿姨想占小明的便宜,虚报重量。但是,小明利用逆向思维,反而让阿姨吃了哑巴亏。

常见的逆向思维有以下 5 种:

(1)结构逆向

(2)功能逆向

(3)状态逆向

(4)原理逆向

(5)方法逆向

理解这些逆向的方法,有助于你打开数据分析的思路,不断提升自己的可迁移能力,尤其是底层的思维能力,做到以不变应万变。

3.3.8 八段:演绎思维

演绎思维的方向是由一般到个别,主要形式是「三段论」,由大前提、小前提、结论三部分组成。

比如说,小明不仅知道:金属都能导电;而且知道:铜是一种金属;所以小明可以得出结论:铜能导电。

运用演绎思维,应该遵循 5 项基本原则:

(1)不要出现第四个概念

(2)中项要能向外延伸

(3)大项和小项都不能扩大

(4)前提都为否,结论不必然

(5)前提有一否,结论必为否

掌握以上基本原则,能帮你建立更加严谨的数据分析思维。

3.3.9 九段:归纳思维

归纳思维的方向与演绎正好相反,归纳的过程是从个别到一般。

比如说,小明先知道:金、银、铜、铁等金属分别能导电,然后归纳出一个结论:所有金属都能导电。

这个过程,是先接触到个别事物,然后再进行归纳总结。

常见的归纳方法有以下 5 种:

(1)求同法

(2)求异法

(3)共用法

(4)共变法

(5)剩余法

这些方法是我们获取新知识的重要途径,不过需要注意的是,很多案例和故事都说明,有限的观察并不等于真理。

为了避免以偏概全,我们还要加强归纳思维的训练,积累更多实战的经验,这样归纳总结出来的结论,才能经得起时间的考验,才会更有现实意义。

通过归纳总结,得出有价值的分析结论,这既是数据分析的终点,也是数据分析的起点,形成一个正向的循环系统。

3.4 如何在业务时间数据分析思维

好奇心
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考链接:(秦路)七周成为数据分析师(第一周)
数据分析思维九段路线图

最后

以上就是风趣水蜜桃为你收集整理的(秦路)七周成为数据分析师(第一周)—— 数据分析思维1. 什么是数据分析2.应该怎么学3. 数据分析思维的全部内容,希望文章能够帮你解决(秦路)七周成为数据分析师(第一周)—— 数据分析思维1. 什么是数据分析2.应该怎么学3. 数据分析思维所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(44)

评论列表共有 0 条评论

立即
投稿
返回
顶部