我是靠谱客的博主 自由山水,这篇文章主要介绍python支持向量机分类器怎么用_用Python实现SVM多分类器,现在分享给大家,希望可以做个参考。

支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等

项目1 说明svm.py

该文件中实现了一个简单的SVM,使用SMO进行优化,在选择优化的变量时采用随机选择的方式。

plattSMO.py

该文件也是采用SMO进行优化,在选择优化变量时,选择误差步长最大的两个变量进行优化,可以大幅提高优化速度。该文件中还加入了核函数(线性核函数,RBF核函数),具体实现参见 kernelTrans(self,x,z)

libSVM.py

该文件实现了一个SVM多分类器,其实现原理是:对于样本中的每两个类别之间都训练一个SVM二分类器。对于k个类别, 共可训练出k(k-1)/2个SVM二分类器。在预测时,将测试样例分别输入到k(k-1)/2分类器中。

假设(i,j)表示划分类别i和类别j的SVM分类器

对于每个分类器(i,j):

若分类结果为+1,则count[i] +=1

若分类结果为-1,则count[j] +=1

最后分类结果取相应类别计数最大的那个类别作为最终分类结果

本文件还实现了将训练的模型保存成文件,方便预测时直接从文件读取,省去了再次训练的时间。

** 例子

项目2

支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等

项目3

使用SVM算法对短文本分类

提取的特征在文件confing.py中

最后

以上就是自由山水最近收集整理的关于python支持向量机分类器怎么用_用Python实现SVM多分类器的全部内容,更多相关python支持向量机分类器怎么用_用Python实现SVM多分类器内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(151)

评论列表共有 0 条评论

立即
投稿
返回
顶部