我是靠谱客的博主 自觉小懒虫,这篇文章主要介绍OpenCV 标定和畸变校正(2),现在分享给大家,希望可以做个参考。

海尔630冰箱的标定和畸变校正。上篇文章中直接使用OpenCV的例程进行畸变校正的效果不太理想。使用以下方法(张正友)效果更好。


京东链接:

http://item.jd.com/4027713.html#crumb-wrap


标定代码:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/************************************************************************ 运行环境:VS2013+OpenCV 2.4.13 运行结果:检测拍摄的棋盘畸变图像,获取摄像头的畸变信息 *************************************************************************/ #include <opencv2opencv.hpp> #include <fstream> #include <iostream> using namespace std; using namespace cv; char dir[64]; char fileNames[64]; char chess_boardImage_path[] = "E:\hanxiaoxuan\distort\"; char chess_boardDetect_path[] = "E:\hanxiaoxuan\distort_detect\"; char chess_boardCorner_path[] = "E:\hanxiaoxuan\distort_corner\"; char calibrationResult[] = "E:\hanxiaoxuan\calibration_result.txt"; char datFileName[] = "E:\hanxiaoxuan\camParam.dat"; int main() { string *imageList = new string[100]; string *chess_boardList = new string[100]; ofstream fout(calibrationResult); //保存标定结果的文件 // 利用dir命令将当前目录下的.jpg文件名写入names.txt sprintf(dir, "%s%s%s%s%s%s", "dir ", chess_boardImage_path, "*.jpg", " /a /b >", chess_boardImage_path, "names.txt"); system(dir); char name[64] = ""; // 打开文件读取其中的文件名 sprintf(fileNames, "%s%s", chess_boardImage_path, "names.txt"); FILE* fp = fopen(fileNames, "r"); if (NULL == fp) printf("error,cannot open the name list"); // 获得文件数量 int line = 0; while (fgets(name, 64, fp) != NULL) { char subname[64]; sscanf(name, "%[^n]%s", subname); string image_name; stringstream stream; stream << subname; image_name = stream.str(); imageList[line] = image_name.substr(0, image_name.length() - 4); line++; } //读取每一幅图像,从中提取出角点,然后对角点进行亚像素精确化 cout << "开始提取角点………………" << endl; int image_count = line; //图像数量 Size board_size = Size(9, 6); //棋盘上每行、列的内角点数 vector<Point2f> corners; //缓存每幅图像上检测到的角点 vector<vector<Point2f>> corners_Seq; //保存检测到的所有角点 vector<Mat> image_Seq; int successImageNum = 0; //成功提取角点的棋盘图数量 int count = 0; for (int i = 0; i != image_count; i++) { cout << "Frame #" << i + 1 << "..." << endl; string imageFileName; imageFileName = imageList[i]; //图像的文件名 imageFileName += ".jpg"; //图像的文件名.jpg cv::Mat image = imread(chess_boardImage_path + imageFileName); //提取角点 cv::Mat imageGray; cvtColor(image, imageGray, CV_RGB2GRAY); bool patternfound = findChessboardCorners(image, board_size, corners, CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE + CALIB_CB_FAST_CHECK); if (!patternfound) { cout << "can not find chessboard corners!n"; continue; exit(1); } else { //亚像素精确化 cornerSubPix(imageGray, corners, Size(11, 11), Size(-1, -1), TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1)); //绘制检测到的角点并保存 Mat imageTemp = image.clone(); for (int j = 0; j < corners.size(); j++) { circle(imageTemp, corners[j], 10, Scalar(0, 0, 255), 2, 8, 0); } string imageFileName; imageFileName = imageList[i]; imageFileName += "_corner.jpg"; imwrite(chess_boardCorner_path + imageFileName, imageTemp); cout << "Frame corner#" << i + 1 << "...end" << endl; imwrite(chess_boardDetect_path + imageFileName, image); chess_boardList[successImageNum] = imageList[i]; count = count + corners.size(); successImageNum = successImageNum + 1; corners_Seq.push_back(corners); } image_Seq.push_back(image); } cout << "角点提取完成!n"; //摄像机标定 cout << "开始标定………………" << endl; Size square_size = Size(30, 30); vector<vector<Point3f>> object_Points; //保存标定板上角点的三维坐标 Mat image_points = Mat(1, count, CV_32FC2, Scalar::all(0)); //保存提取的所有角点 vector<int> point_counts; //初始化标定板上角点的三维坐标 for (int t = 0; t < successImageNum; t++) { vector<Point3f> tempPointSet; for (int i = 0; i < board_size.height; i++) { for (int j = 0; j < board_size.width; j++) { //假设标定板放在世界坐标系中z=0的平面上 Point3f tempPoint; tempPoint.x = i*square_size.width; tempPoint.y = j*square_size.height; tempPoint.z = 0; tempPointSet.push_back(tempPoint); } } object_Points.push_back(tempPointSet); } for (int i = 0; i < successImageNum; i++) { point_counts.push_back(board_size.width*board_size.height); } //开始标定 Size image_size = image_Seq[0].size(); cv::Matx33d intrinsic_matrix; //摄像机内参数矩阵 cv::Vec4d distortion_coeffs; //摄像机的4个畸变系数:k1,k2,k3,k4 std::vector<cv::Vec3d> rotation_vectors; //每幅图像的旋转向量 std::vector<cv::Vec3d> translation_vectors; //每幅图像的平移向量 int flags = 0; flags |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC; flags |= cv::fisheye::CALIB_CHECK_COND; flags |= cv::fisheye::CALIB_FIX_SKEW; fisheye::calibrate(object_Points, corners_Seq, image_size, intrinsic_matrix, distortion_coeffs, rotation_vectors, translation_vectors, flags, cv::TermCriteria(3, 20, 1e-6)); cout << "标定完成!n"; FILE *camParam = fopen(datFileName, "wb"); if (camParam == NULL) { std::cout << "can not create data file: " << datFileName << " !!!" << std::endl; return false; } fwrite(&intrinsic_matrix, sizeof(cv::Matx33d), 1, camParam); fwrite(&distortion_coeffs, sizeof(cv::Vec4d), 1, camParam); fwrite(&image_size, sizeof(Size), 1, camParam); fclose(camParam); //对标定结果进行评价 cout << "开始评价标定结果………………" << endl; double total_err = 0.0; //所有图像的平均误差的总和 double err = 0.0; //每幅图像的平均误差 vector<Point2f> image_points2; //保存重新计算得到的投影点 cout << "每幅图像的标定误差:" << endl; cout << "每幅图像的标定误差:" << endl << endl; for (int i = 0; i < successImageNum; i++) { vector<Point3f> tempPointSet = object_Points[i]; //通过得到的摄像机内外参数,对空间的三维点进行重新投影计算,得到新的投影点 fisheye::projectPoints(tempPointSet, image_points2, rotation_vectors[i], translation_vectors[i], intrinsic_matrix, distortion_coeffs); //计算新的投影点和旧的投影点之间的误差 vector<Point2f> tempImagePoint = corners_Seq[i]; Mat tempImagePointMat = Mat(1, tempImagePoint.size(), CV_32FC2); Mat image_points2Mat = Mat(1, image_points2.size(), CV_32FC2); for (size_t i = 0; i != tempImagePoint.size(); i++) { image_points2Mat.at<Vec2f>(0, i) = Vec2f(image_points2[i].x, image_points2[i].y); tempImagePointMat.at<Vec2f>(0, i) = Vec2f(tempImagePoint[i].x, tempImagePoint[i].y); } err = norm(image_points2Mat, tempImagePointMat, NORM_L2); total_err += err /= point_counts[i]; cout << "第" << i + 1 << "幅图像的平均误差:" << err << "像素" << endl; fout << "第" << i + 1 << "幅图像的平均误差:" << err << "像素" << endl; } cout << "总体平均误差:" << total_err / image_count << "像素" << endl; fout << "总体平均误差:" << total_err / image_count << "像素" << endl << endl; cout << "评价完成!" << endl; //保存标定结果 cout << "开始保存标定结果………………" << endl; Mat rotation_matrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); //保存每幅图像的旋转矩阵 fout << "相机内参数矩阵:" << endl; fout << intrinsic_matrix << endl; fout << "畸变系数:n"; fout << distortion_coeffs << endl; for (int i = 0; i < successImageNum; i++) { fout << "第" << i + 1 << "幅图像的旋转向量:" << endl; fout << rotation_vectors[i] << endl; //将旋转向量转换为相对应的旋转矩阵 Rodrigues(rotation_vectors[i], rotation_matrix); fout << "第" << i + 1 << "幅图像的旋转矩阵:" << endl; fout << rotation_matrix << endl; fout << "第" << i + 1 << "幅图像的平移向量:" << endl; fout << translation_vectors[i] << endl; } cout << "完成保存" << endl; fout << endl; //显示标定结果 Mat mapx = Mat(image_size, CV_32FC1); Mat mapy = Mat(image_size, CV_32FC1); Mat R = Mat::eye(3, 3, CV_32F); cout << "保存矫正图像" << endl; for (int i = 0; i != successImageNum; i++) { cout << "Frame #" << i + 1 << "..." << endl; Mat newCameraMatrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); fisheye::initUndistortRectifyMap(intrinsic_matrix, distortion_coeffs, R, intrinsic_matrix, image_size, CV_32FC1, mapx, mapy); Mat t = image_Seq[i].clone(); cv::remap(image_Seq[i], t, mapx, mapy, INTER_LINEAR); string imageFileName; imageFileName = chess_boardList[i]; imageFileName += "_d.jpg"; imwrite(chess_boardCorner_path + imageFileName, t); } cout << "保存结束" << endl; delete [] imageList; delete [] chess_boardList; return 0; }

得到两组参数,分别是相机的内参矩阵和畸变系数。保存在camPara.dat供calibration代码校正使用。


校正代码:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/************************************************************************ 运行环境:VS2013+OpenCV 2.4.13 运行结果:根据摄像头的畸变信息,进行相机标定 *************************************************************************/ #include <opencv2opencv.hpp> #include <fstream> #include <iostream> using namespace std; using namespace cv; char dir[64]; char test_fileNames[64]; char testFile_path[] = "E:\hanxiaoxuan\distort\"; char outputFile_path[] = "E:\hanxiaoxuan\undistort\"; char test_datFileName[] = "E:\hanxiaoxuan\camParam.dat"; //string test_imageList[100]; int main() { string *test_imageList = new string[100]; // 利用dir命令将当前目录下的.jpg文件名写入test_names.txt sprintf(dir, "%s%s%s%s%s%s", "dir ", testFile_path, "*.jpg", " /a /b >", testFile_path, "test_names.txt"); system(dir); char test_name[64] = ""; // 打开文件读取其中的文件名 sprintf(test_fileNames, "%s%s", testFile_path, "test_names.txt"); FILE* fp_test = fopen(test_fileNames, "r"); if (NULL == fp_test) printf("error,cannot open the name list"); // 获得文件数量 int line = 0; while (fgets(test_name, 64, fp_test) != NULL) { char subname[64]; sscanf(test_name, "%[^n]%s", subname); string image_name; stringstream stream; stream << subname; image_name = stream.str(); test_imageList[line] = image_name.substr(0, image_name.length() - 4); line++; } string testName; //利用摄像机畸变参数对图片进行矫正 cout << "保存矫正图像" << endl; for (int i = 0; i < line; i++) { cout << "Frame #" << i + 1 << "..." << endl; testName = test_imageList[i] + ".jpg"; Mat testImage = imread(testFile_path + testName); cv::Matx33d test_intrinsic_matrix; cv::Vec4d test_distortion_coeffs; Size test_image_size = testImage.size(); FILE *test_camParam = fopen(test_datFileName, "rb"); if (test_camParam == NULL) { std::cout << "can not create data file: " << test_datFileName << " !!!" << std::endl; return false; } fread(&test_intrinsic_matrix, sizeof(cv::Matx33d), 1, test_camParam); fread(&test_distortion_coeffs, sizeof(cv::Vec4d), 1, test_camParam); fread(&test_image_size, sizeof(Size), 1, test_camParam); fclose(test_camParam); Mat test_mapx = Mat(test_image_size, CV_32FC1); Mat test_mapy = Mat(test_image_size, CV_32FC1); Mat test_R = Mat::eye(3, 3, CV_32F); fisheye::initUndistortRectifyMap(test_intrinsic_matrix, test_distortion_coeffs, test_R, test_intrinsic_matrix, test_image_size, CV_32FC1, test_mapx, test_mapy); Mat t = testImage.clone(); cv::remap(testImage, t, test_mapx, test_mapy, INTER_LINEAR); imwrite(outputFile_path + testName, t); } cout << "标定结束" << endl; delete [] test_imageList; return 0; }



校正效果如下:

原图1


原图校正后


原图2


校正后


校正效果基本令人满意。

最后

以上就是自觉小懒虫最近收集整理的关于OpenCV 标定和畸变校正(2)的全部内容,更多相关OpenCV内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(51)

评论列表共有 0 条评论

立即
投稿
返回
顶部