我是靠谱客的博主 唠叨鸭子,最近开发中收集的这篇文章主要介绍lu分解法解线性方程组 python_一篇文章入门大规模线性方程组求解,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

前面介绍过主要的线性方程组求解库,参考附录。求解大规模线性方程组是仿真软件求解器的底层技术,求解器时间基本都消耗在方程组求解上。线性方程组的解法比较成熟,方法也有很多,而且不同的方法对应不同类型方程组,所以在方法选择上实际很讲究。

商业软件通常将方法封装起来,用户包括开发人员都接触不到线性方程组求解方法。商业软件内部一般会根据求解规模,求解类型等选择合适的线性方程组求解方法。

有些商业软件开放了部分接口供用户选择;开源软件比如OpenFOAM,以及使用开源软件的平台Simscale等提供了许多选项供用户选择。

本文简单介绍下线性方程组的常用解法。通常将线性方程组表示为:

A*x=b

A为已知N*N的矩阵,通常称为刚度矩阵(刚度是力学中的概念,电磁,热等也习惯性这么称呼),b为已知向量,x为待求向量。解线性方程组的操作基本围绕矩阵A展开。

首先介绍一些相关术语:

1.矩阵条件数

条件数是一个表征矩阵稳定特性的标志,条件数越大,说明矩阵越不稳定,即当矩阵中数据出现微小变化时,x结果变化非常大。Matlab中可直接使用命令cond(A)查看矩阵条件数。

2.满秩矩阵

用初等行变换将矩阵A化为阶梯形矩阵, 矩阵中非零行的个数就定义为这个矩阵的秩,记做r(A)

即如果矩阵A为N*N,r(A)=N,则矩阵A为满秩矩阵

在边界元,矩量法等计算方法中,最终形成的A为满秩矩阵。

3.稀疏矩阵

矩阵中绝大部分元素都是0

4.对称矩阵

矩阵的上三角和下三角关于对角线对称

5.求解线性方程组直接法

先求出矩阵A的逆矩阵,再乘以向量b

6.求解线性方程组迭代法

简单讲,就是给出一个初始解x',带入原方程中,每次评价差距逐步修正,直到最终A*x'-b 接近0为止。

7. OOC(out of core)

对于大型方程组,内存通常无法装下,在求解过程中需要将部分数据写到硬盘上,再次使用的时候再读回来。

常用直接法:

直接法的本质是要计算出A的逆矩阵,通常在求解小规模和特征值问题是可以考虑使用直接法。

1. 高斯消去法/Doolittle /三角分解法/追赶法

这是最基本的方法,时间复杂度和空间复杂度都是N的三次方,软件一般都不会使用。

2. 矩阵分解相关

2. 1.LU分解法

LU分解就是将矩阵分解成单位下三角矩阵L和上三角矩阵U,本质上仍然属于高斯消去法

2.2. Cholesky分解

Cholesky 分解是把一个对称正定的矩阵表示成一个下三角矩阵L和其转置的乘积的分解。如果矩阵是正定的,使用 Cholesky分解会比LU分解更加高效。

2.3. LDLT分解法

Cholesky 分解法的改进

2.4.QR分解

QR分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积。

2.5. Schur分解

2.6. SVD/GSVD

奇异值分解/一般奇异值分解

在求解大规模线性方程组中,一般不会使用直接法求解,但在使用迭代法过程中需要使用直接法中的方法加工数据。

间接法的本质是迭代,不同方法的区别在于如何选取初始值以及迭代方法。

1. 牛顿迭代,Jacobi(雅克比)迭代,Gauss-Seidel迭代

线性迭代方法,一般情况下收敛太慢,大规模方程组不推荐使用。

2. JOR -- Jacobi Over Relaxation

Jacobi 方法加入松弛因子

3. Lanczos方法

适用于稀疏矩阵特征值问题

4. 共轭梯度方法以及改进方法

共轭梯度法

Conjugate gradient method--CG

双共轭梯度法

Bi-conjugate gradient method--BCG

稳定双共轭梯度法

Bi-conjugate gradient stabilized method--GCGS

预条件共轭梯度法

Preconditioned gradient stabilized method--PCG

相比牛顿和Jacobi,通过优化使其共轭的求解向量和方向,加速了求解性能。

共轭梯度法的思想就是找到N个两两共轭的方向,每次沿着一个方向优化得到该方向上的极小值,后面再沿其它方向求极小值的时候,不会影响前面已经得到的沿哪些方向上的极小值,所以理论上对n个方向都求出极小值就得到了N维问题的极小值。

5. GMRAS广义最小残量

(Generalized Minimal Residual Algorithm)

非对称系统的线性方程组的数值解迭代法,该方法与最小残量的 Krylov 子空间中向量来逼近解,是求解大规模线性方程组的常用算法之一,具有收敛速度快、稳定性好等优点。

改进的GMRAS:

SGMRAS Simpler GMRAS

PGMRAS Preconditioned GMRAS

6. 快速多级(Fast Multi pole Method)

当矩阵为满秩矩阵时,传统计算方法资源需求和求解规模呈指数级上升,大规模的系统求解需要使用快速多级方法。本技术博客和公众号中有详细介绍。

改进方法:多层快速多级

7. Successive Over Relaxation(SOR)连续松弛

连续过度松弛(SOR)方法是高斯-赛德尔(Gauss-Seidel)方法的一种变体,用于求解线性方程组,从而可以更快地收敛。任何缓慢收敛的迭代过程都可以使用类似的方法。

改进的SOR:

Accelerated Over relaxation (AOR)过松弛

Preconditioned AOR -- PAOR 预条件过松弛

Quasi AOR -- QAOR准过松弛

8. Krylov子空间迭代法

将矩阵A分解成多个子矩阵,并用一系列线性表达式组合表示。将整个系统降维,利于并行计算,是大规模线性方程组有效的一种解法。其中涉及到了Lanczos方法和Arnoldi方法。

按照矩阵A的特点,我们可以做如下分类:

1. 是否是满秩矩阵;

2. 是否是稀疏矩阵;

3. 是否是对称矩阵;

4. 是否是病态矩阵;

5. 是否是正定矩阵

6. 矩阵规模(矩阵中N的大小)

在选择求解方法的时候,需要考虑到方程组矩阵以上特点。根据作者的经验,方程组的求解性能高度依赖矩阵特征,矩阵规模和硬件。

问题:

求解线性方程组 Ax=b.

Matlab 中提供了方程的求解方法:

x=Ab ( 反除法符号)

最简单的问题,一群兔子和鸭子,一共有40条腿,20张嘴,问兔子鸭子各多少只,两个变量,两个方程组成一个简单的线性方程组:

4*x+2*y =40

x+y =20

在Matlab中输入:

>>A =

4 2

1 1

>> b=[40, 15]'

b =

40

15

>> x=Ab

x =

5

10

当方程求解规模达到1000*1000的时候,Matlab还能应付,速度也不错。当规模达到10w*10w的时候,Matlab会运行相当长时间,然后弹出一个错误。这是因为对于10w*10w的矩阵,用原始的数据结构,性能会下降很快。由有限元计算的矩阵特征可知,矩阵是数据大部分为0的稀疏矩阵,Matlab提供了稀疏矩阵功能,在使用x=Ab 之前 使用如下命令:

x=sparse(x);

10万*10万的方程组1秒之内求出结果。

对于大型线性方程组的求解,使用Matlab做验证是个不错的选择

回到主题:

1. BLAS(Basic Linear Algebra Subprograms)

blas 是许多数值计算软件库的核心,用Fortran语言写成,库一共有三个level,第一level包含了vector计算的一些function;第二个level则是矩阵与vector计算;第三个level是矩阵与矩阵的计算。BLAS接口稍微复杂,一般很少直接使用。

开源

2. Intel MKL

商用是不错的选择。

Intel数学核心函数库(MKL)是一套高度优化、线程安全的数学例程、函数,面向高性能的工程、科学与财务应用。英特尔 MKL 的集群版本包括 ScaLAPACK 与分布式内存快速傅立叶转换,并提供了线性代数 (BLAS、LAPACK 和Sparse Solver)、快速傅立叶转换、矢量数学 (Vector Math) 与随机号码生成器支持。

主要包括:

LAPACK (线形代数工具linear algebra package)

DFTs (离散傅立叶变换 Discrete Fourier transforms)

VML (矢量数学库Vector Math Library)

VSL (矢量统计库Vector Statistical Library)

MKL的主要功能

2.1)BLAS 和 LAPACK

在英特尔处理器中部署经过高度优化的基本线性代数例程BLAS(Basic Linear Algebra Subroutines)和 线性代数包LAPACK(Linear Algebra Package) 例程,它们提供的性能改善十分显著。

2.2)ScaLAPACK

ScaLAPACK是一个并行计算软件包,适用于分布存储的MIMD并行机。ScaLAPACK提供若干线性代数求解功能,具有高效、可移植、可伸缩、高可靠性的特点,利用它的求解库可以开发出基于线性代数运算的并行应用程序。ScaLAPACK 的英特尔MKL 实施可提供显著的性能改进,远远超出标准 NETLIB 实施所能达到的程度。

2.3)PARDISO稀疏矩阵解算器

利用 PARDISO 直接稀疏矩阵解算器解算大型的稀疏线性方程组,该解算器获得了巴塞尔大学的授权,是一款易于使用、具备线程安全性、高性能的内存高效型软件库。英特尔? MKL 还包含共轭梯度解算器和 FGMRES 迭代稀疏矩阵解算器。

2.4)快速傅立叶变换 (FFT)

充分利用带有易于使用的新型 C/Fortran 接口的多维 FFT 子程序(从 1 维至 7 维)。英特尔? MKL 支持采用相同 API 的分布式内存集群,支持将工作负载轻松地分布到大量处理器上,从而实现大幅的性能提升。此外,英特尔 MKL 还提供了一系列 C 语言例程(“wrapper”),这些例程可模拟 FFTW 2.x 和 3.0 接口,从而支持当前的 FFTW 用户将英特尔 MKL 集成到现有应用中。

2.5)矢量数学库(VML)

矢量数学库(Vector Math Library)借助计算密集型核心数学函数(幂函数、三角函数、指数函数、双曲函数、对数函数等)的矢量实施显著提升应用速度。

2.6)矢量统计库—随机数生成器(VSL)

利用矢量统计库(Vector Statistical Library)随机数生成器加速模拟,从而实现远远高于标量随机数生成器的系统性能提升

商用

3. Eigen

主页:

http://eigen.tuxfamily.org/index.php?title=Main_Page

Eigen 是一个轻量级的库,使用只需头文件,接口比较齐全,文档也很全面,一般的矩阵操作运算都能满足。提供了DenseMatrix 和 SparseMatrix,对于稀疏矩阵的效率也不错。

开源

4. Spoolse

早期很多人使用,性能不错,使用简单。维护的不是很好,文档使用ps格式。

http://www.netlib.org/linalg/spooles/spooles.2.2.html

开源

5. Lapack

使用最广泛的线性代数包,底层调用 BLAS,能求解 AX=b, 矩阵分解、求逆,求矩阵特征值、奇异值等。文档齐全,使用灵活,稳定性好,用作研究和商业开发都是不错的选择。提供SVN源码下载

http://www.netlib.org/lapack/

开源

6. Pardiso

PARDISO是为解决大 稀疏对称和非对称线性系统的方程的软件包,如下特点:

线程安全,,高性能的, 和内存使用率低,支持共享内存和内存多处理器。

http://www.pardiso-project.org/

商用,学术用免费

7. Mumps

使用多波前法的稀疏矩阵求解库,支持并行计算。

http://mumps.enseeiht.fr/

开源

8. PETSc

PETSc是一个高大上的科学计算库,求解线性方程是其中一个功能,支持内存共享并行计算机,支持多线程,GPU加速等,支持求解稀疏矩阵

http://www.mcs.anl.gov/petsc/documentation/linearsolvertable.html

开源

9. SuperLU

SuperLU是一个求解大规模,稀疏,非对称系统对线性方程组的通用库,c语言编写,可供Fortran和C调用。最新版本为4.3 (2014/10/1)支持并行计算和分布式计算。

http://www.cs.berkeley.edu/~demmel/SuperLU.html

开源

10. Umfpack

UMFPACK是 用来求解不对称稀疏线性系统软件包, Ax = b,使用非对称多波方法,SuitSparse有此算法

使用比较简单,Windows下需要自己编译。

http://www.cise.ufl.edu/research/sparse/umfpack/

开源

11. TAUCS

求解稀疏矩阵线性方程软件包,最新版本支持多线程

http://www.tau.ac.il/~stoledo/taucs/

开源

12. SuitSparse

SuiteSparse是一组C、Fortran和MATLAB函数集,用来生成空间稀疏矩阵数据。在SuiteSparse中几何多种稀疏矩阵的处理方法,包括矩阵的LU分解,QR分解,Cholesky分解,提供了解非线性方程组、实现最小二乘法等多种函数代码

http://faculty.cse.tamu.edu/davis/suitesparse.html

开源

13. Sparselib++

用C++写的 稀疏矩阵库,可以和 IML++一起使用做线性方程组的迭代求解。

http://math.nist.gov/sparselib++/

开源

14. Trilinos

Trilinos也是个高大上的东西,求解线性方程只是其中一部分功能

http://trilinos.org/capability-areas/#ScalableLinearAlgebra

开源

15.IML++

使用C++模板库 和迭代方法 求解对称,非对称矩阵库

http://math.nist.gov/iml++/

开源

使用推荐:

1. 简单快速上手 Eigen

2. 商业使用 Intel MKL

3. 研究使用 Lapack,PETSc,SuitSparse

最后

以上就是唠叨鸭子为你收集整理的lu分解法解线性方程组 python_一篇文章入门大规模线性方程组求解的全部内容,希望文章能够帮你解决lu分解法解线性方程组 python_一篇文章入门大规模线性方程组求解所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(46)

评论列表共有 0 条评论

立即
投稿
返回
顶部