我是靠谱客的博主 魔幻宝贝,最近开发中收集的这篇文章主要介绍迁移学习——Domain Adaptation文献20202019201820172016201520142013,觉得挺不错的,现在分享给大家,希望可以做个参考。
概述
人工智能文献记录专栏,专栏地址:https://blog.csdn.net/u014157632/category_9760481.html,总目录:https://blog.csdn.net/u014157632/article/details/104578738。不定期更新
2020
- Gradients as Features for Deep Representation Learning
- Bridging Theory and Algorithm for Domain Adaptation
2019
- Yu C, Wang J, Chen Y, et al. Accelerating deep unsupervised domain adaptation with transfer channel pruning[C]//2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019: 1-8.
- Wang Z, Dai Z, Póczos B, et al. Characterizing and avoiding negative transfer [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 11293-11302.
- Bouvier V, Very P, Hudelot C, et al. Hidden Covariate Shift: A Minimal Assumption For Domain Adaptation[J]. arXiv preprint arXiv:1907.12299, 2019.
- Cai G, Wang Y, He L, et al. Unsupervised domain adaptation with adversarial residual transform networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019.
- - [ ] Zhai X , Puigcerver J , Kolesnikov A , et al. The Visual Task Adaptation Benchmark[J]. 2019.
- Guo Y , Li Y , Wang L , et al. AdaFilter: Adaptive Filter Fine-tuning for Deep Transfer Learning[J]. 2019.
2018
- Li Y, Wang N, Shi J, et al. Adaptive batch normalization for practical domain adaptation[J]. Pattern Recognition, 2018, 80: 109-117.
- Rozantsev A, Salzmann M, Fua P. Beyond sharing weights for deep domain adaptation[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 41(4): 801-814.
- Bhushan Damodaran B, Kellenberger B, Flamary R, et al. Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 447-463.
- Dong N, Xing E P. Domain adaption in one-shot learning[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Cham, 2018: 573-588.
- Gautheron L, Redko I, Lartizien C. Feature selection for unsupervised domain adaptation using optimal transport[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Cham, 2018: 759-776.
- Chadha A, Andreopoulos Y. Improving adversarial discriminative domain adaptation[J]. arXiv preprint arXiv:1809.03625, 2018.
- Cui Y, Song Y, Sun C, et al. Large scale fine-grained categorization and domain-specific transfer learning[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4109-4118.
- Yang B, Ma A J, Yuen P C. Learning domain-shared group-sparse representation for unsupervised domain adaptation[J]. Pattern Recognition, 2018, 81: 615-632.
- Ying W, Zhang Y, Huang J, et al. Transfer learning via learning to transfer[C]//International Conference on Machine Learning. 2018: 5085-5094.
- Manders J, Marchiori E, van Laarhoven T. Simple domain adaptation with class prediction uncertainty alignment[J]. arXiv preprint arXiv:1804.04448, 2018, 1(2): 3.
- Xu R, Li G, Yang J, et al. Unsupervised domain adaptation: An adaptive feature norm approach[J]. Preprint, 2018.
- Shen J, Qu Y, Zhang W, et al. Wasserstein distance guided representation learning for domain adaptation[C]//Thirty-Second AAAI Conference on Artificial Intelligence. 2018.
2017
- Tzeng E, Hoffman J, Saenko K, et al. Adversarial discriminative domain adaptation[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 7167-7176.
ADDA - Shen J, Qu Y, Zhang W, et al. Adversarial representation learning for domain adaptation[J]. stat, 2017, 1050: 5.
对抗迁移学习 - Haeusser P, Frerix T, Mordvintsev A, et al. Associative domain adaptation[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 2765-2773.
- Cariucci F M, Porzi L, Caputo B, et al. Autodial: Automatic domain alignment layers[C]//2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017: 5077-5085.
- Zellinger W, Grubinger T, Lughofer E, et al. Central moment discrepancy (cmd) for domain-invariant representation learning[J]. arXiv preprint arXiv:1702.08811, 2017.
CMD - Morerio P, Murino V. Correlation alignment by riemannian metric for domain adaptation[J]. arXiv preprint arXiv:1705.08180, 2017.
- Long M, Zhu H, Wang J, et al. Deep transfer learning with joint adaptation networks[C]//Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017: 2208-2217.
JDN - Zellinger W , Moser B A , Grubinger T , et al. Robust Unsupervised Domain Adaptation for Neural Networks via Moment Alignment[J]. 2017.
- French G, Mackiewicz M, Fisher M. Self-ensembling for visual domain adaptation[J]. arXiv preprint arXiv:1706.05208, 2017.
- Motiian S, Piccirilli M, Adjeroh D A, et al. Unified deep supervised domain adaptation and generalization[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 5715-5725.
2016
- Sun B, Saenko K. Deep coral: Correlation alignment for deep domain adaptation[C]//European conference on computer vision. Springer, Cham, 2016: 443-450.
- Ghifary M, Kleijn W B, Zhang M, et al. Deep reconstruction-classification networks for unsupervised domain adaptation[C]//European Conference on Computer Vision. Springer, Cham, 2016: 597-613.
- Bousmalis K, Trigeorgis G, Silberman N, et al. Domain separation networks[C]//Advances in neural information processing systems. 2016: 343-351.
- Ganin Y, Ustinova E, Ajakan H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096-2030.
对抗迁移学习 - Li Y , Wang N , Shi J , et al. Adaptive Batch Normalization for practical domain adaptation[J]. Pattern Recognition, 2016, 80.
- Long M, Zhu H, Wang J, et al. Unsupervised domain adaptation with residual transfer networks[C]//Advances in neural information processing systems. 2016: 136-144.
- Sun B, Feng J, Saenko K. Return of frustratingly easy domain adaptation[C]//Thirtieth AAAI Conference on Artificial Intelligence. 2016.
2015
- Zhang X, Yu F X, Chang S F, et al. Deep transfer network: Unsupervised domain adaptation[J]. arXiv preprint arXiv:1503.00591, 2015.
- Ghifary M, Bastiaan Kleijn W, Zhang M, et al. Domain generalization for object recognition with multi-task autoencoders[C]//Proceedings of the IEEE international conference on computer vision. 2015: 2551-2559.
- Long M, Cao Y, Wang J, et al. Learning transferable features with deep adaptation networks[J]. arXiv preprint arXiv:1502.02791, 2015.
- Tzeng E, Hoffman J, Darrell T, et al. Simultaneous deep transfer across domains and tasks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 4068-4076.
2014
- Tzeng E, Hoffman J, Zhang N, et al. Deep domain confusion: Maximizing for domain invariance[J]. arXiv preprint arXiv:1412.3474, 2014.
- Ghifary M, Kleijn W B, Zhang M. Domain adaptive neural networks for object recognition[C]//Pacific Rim international conference on artificial intelligence. Springer, Cham, 2014: 898-904.
MMD - Ajakan H, Germain P, Larochelle H, et al. Domain-adversarial neural networks[J]. arXiv preprint arXiv:1412.4446, 2014.
2013
- Long M, Wang J, Ding G, et al. Transfer feature learning with joint distribution adaptation[C]//Proceedings of the IEEE international conference on computer vision. 2013: 2200-2207.
最后
以上就是魔幻宝贝为你收集整理的迁移学习——Domain Adaptation文献20202019201820172016201520142013的全部内容,希望文章能够帮你解决迁移学习——Domain Adaptation文献20202019201820172016201520142013所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复