概述
在Java程序的生命周期中,Java运行环境提供了一个系统的垃圾回收器线程,负责自动回收那些没有被引用的对象所占用的内存,这种清除无用对象进行内存回收的过程就叫作垃圾回收 (garbage collection)。Java提供自动内存回收的功能,可以让程序员减轻许多内存管理的负担,同时也减少犯错的机会。
当一个对象被创建时,JVM会为该对象分配一定的内存、调用该对象的构造方法并开始跟踪该对象。当该对象停止使用时,JVM将通过垃圾回收器回收该对象所占用的内存。那Java是如何知道一个对象是无用的呢?
这是因为系统中的任何对象都有一个引用计数器,一个对象被引用1次,则该对象的引用计数器为1,被引用2次,则引用计数器为2;相反,若对一个对象减少1次引用,则该对象的引用计数器就减1,依次类推,当一个对象的引用计数器减到0时,说明该对象可以回收。
垃圾回收的好处:
- 它把程序员从复杂的内存追踪、监测、释放等工作中解放出来。
- 它防止了系统内存被非法释放,从而使系统更加稳定。
垃圾回收的特点:
(1)只有当一个对象不被任何引用类型的变量使用时,它占用的内存才可能被垃圾回收器回收。
如下面的程序段:
String str1="This is a string"; String str2 = str1; str1 = null; str2 = new String("This is another string");
当程序执行到第3行时,“This is a string” 对象仍然被 str2 引用,因此,此时不能被垃圾回收器回收。当程序执行完第4行,str2 引用了一个新的字符串对象,此时"This is a string"对象不在被任何引用类型的变量(str1和str2)引用,此时该对象可以被当作垃圾回收。
(2)不能通过程序强迫垃圾回收器立即执行
垃圾回收器负责释放没有引用与之关联的对象所占用的内存,但是回收的时间对程序员是透明的,在任何时候,程序员都不能通过程序强迫垃圾回收器立即执行,但可以通过调用System.gc()或者Runtime.gc() 方法提示垃圾回器进行内存回收操作,不过这也不能保证调用该方法后,垃圾回收器立即执行。
(3)当垃圾回收器将要释放无用对象占用的内存时,先调用该对象的 finalize() 方法。
在Java语言中对象的回收是由系统进行的,但有一些任务需要在回收时进行,如清理一些非内存资源、关闭打开的文件等。这可通过覆盖对象中的finalize()方法来实现,因为系统在回收时会自动调用对象的finalize()方法。
finalize()方法的形式如下:
protected void finalize()throws Throwable
由于只有当垃圾回收器将要释放该对象的内存时,才会执行该对象的finalize()方法,如果在程序退出之前,垃圾回收器始终没有执行释放内存的操作,那么垃圾回收器将不会调用无用对象的finalize()方法。换句话说,假如一个程序只占用了少量的内存,没有造成严重的内存需求,于是垃圾回收器没有释放这些对象的内存就退出了。
显然,如果程序员为某个对象定义了finalize()方法,JVM可能不会调用它,因为垃圾回收器不曾释放过这个对象的内存,调用System.gc()也不会起作用,因为它仅仅是给JVM一个建议而不是命令。当一个对象将要退出生命周期时,可以通过finalize()方法来释放对象所占的其他相关资源,但是,JVM有很大的可能不调用对象的finalize()方法,因此很难保证使用该方法来释放资源是安全有效的。
垃圾回收器和finalize():
java垃圾回收器只负责回收无用对象占据的内存资源。但是如果你的对象不是通过 new 创建的(所有的new 对象都往堆中开辟资源,在一个地方,方便清理/管理资源),它会不知道该如果释放该对象的这块特殊内存。为了应对这个情况,Object自带一个finalize()方法。
finalize()这方法的原理是:一旦垃圾回收器准备释放该对象占用的存储空间,将会先调用其继承/重写的fialize(),并且调用方法后不是立即执行回收,而是在下一次(JVM觉得需要更大内存的时候)回收动作发生时,才会真正回收对象占用的内存。所以一般自己重写fialize()方法,是在回收的最后时刻做一些重要的清理工作。
java垃圾回收几个特点:
1、对象可能不被垃圾回收
你创建的对象做了某个功能,比如显示在电脑的屏幕上。那么除非你特别处理从屏幕上擦除,它永远不可能得到清理。所以如果在finalize()方法中做擦除屏幕的处理,当垃圾回收时,finalize()被调用,屏幕图像清除。请注意:垃圾回收器只有在JVM觉得需要更大内存的时候才会运行(虽然开销小,但是一直运行还是有开销的),所以大部分回收动作是发生在濒临存储空间用完的那一刻,逼得JVM去运行垃圾回收器。如果程序执行结束 (或者中断运行),那些资源也会全部还给操作系统。
2、垃圾回收并不等于析构
这个是C的概念,因为java和C的牵扯太深,所以经常拿来对比。简单说C有一个东西叫析构函数,在销毁对象前必须执行这个析构函数。这里的垃圾回收并不代表析构。finalize()就是类似功能但是不等于。
3、垃圾回收只与内存有关
这里就要讲到finalize()的真正用途。该方法内部执行的操作也应该和内存及其回收有关,所以fialize()方法不是通用的方法。你可能会想到,当对象包含成员对象属性的时候,finalize()是否应该明确要清除那些对象呢?不正确。应该这样理解:无论对象如果创建,垃圾回收器都会负责释放对象占用的所有内存。所以finalize()一般是来处理通过创建对象以外的方式为对象分配存储空间。说起来有些绕口,但是举个例子就知道了。
java跟踪源码的时候经常遇到关键字native修饰的方法,这些方法也叫“本地方法“。在使用这些本地方法的时候,内部调用的是非java代码的方式(不是C就是C++)。.这些非代码中,也许会用到C的malloc()函数系列来分配存储空间。这样除非调用C的free()方法,否则存储空间将不会释放。所以可以在finalize()使用native方式调用free。
以上,就是建议尽量少重写finalize()的道理。
垃圾回收条件:
既然fialize()使用场景这么生僻,那就不要指望频繁使用fialize()。你必须创建其他的清理方法,来自己根据业务清理。但是fialize()有个特点是:程序调用它,是该对象“终结条件“的验证。也就是被标记了,该对象已死,可以回收了。例如:某个对象代表打开的一个文件,在对象被回收前程序员应该关闭文件。只要对象存在没有被适当清理的部分,程序就存在隐晦的缺陷。fialize()可以用来最终发现这种情况。
// Using finalize() to detect an object that// hasn't been properly cleaned up.
class Book {
boolean checkedOut = false;
Book(boolean checkOut) {
checkedOut = checkOut;
}
void checkIn() {
checkedOut = false;
}
protected void finalize() {
if(checkedOut)
System.out.println("Error: checked out");
// Normally, you'll also do this:
//
super.finalize(); // Call the base-class version
}
}
public class TerminationCondition {
public static void main(String[] args) {
Book novel = new Book(true);
// Proper cleanup:
novel.checkIn();
// Drop the reference, forget to clean up:
new Book(true);
// Force garbage collection & finalization:
System.gc();
}
}/* Output:
Error: checked out
*///:~
这个例子的终结条件是:所有Book对象在被当做垃圾回收前都应该checkIn。但是在main里面,第二本书没有checkIn,这个时候通过finalize(),就能明确知道,有的对象没有在销毁前处理干净了。另外,代码中还使用了System.gc();这是强制唤起垃圾回收机器,来触发BOOK的finalize();当然,如果不这样强制唤起也行,当程序运行到被分配了大量内存的时候(可以大量反复创建BOOK),逼得垃圾回收器会自动触发。如果BOOK有继承某个父类,要触发该父类的finalize(),可以使用super.finalize();调用。
垃圾回收器如何工作
一般印象里面,在堆内分配新资源会比较慢,毕竟比不了堆栈快。但是其实JVM在这方面是做了大量的优化,其中垃圾回收器对于提高对象的创建速度,具有明显效果。即使用垃圾回收器释放存储空间有利于未使用存储空间的分配。通俗点就是说,垃圾回收器回收的内存越多,创建对象理论上会更快(还是有临界的,一般认为媲美其他语言在堆栈中创建对象,比如C)。C的堆就好像一个院子,里面的每个对象各管各的存储空间。一段时间以后某个对象被销毁了。它的空间必须被重新使用。在某些JVM中,堆就像一个传送带,分配一个新的对象,它就往前移动一格。这个意味着空间分配会非常快(寻址快)。java的寻址指针只需要简单移动到尚未分配的区域就行,这样效率比得上C在堆栈上分配的速度。其中,记录对象空间地址“下标“方面,还是有部分开销的,但是比C需要查找堆的开销,小得多。其实,java中的堆未必完全是像传送带,因为这会造成频繁的内存页面调度(内存是分页的,翻页时是要移出硬盘,放在虚拟内存上)。页面调度会显著影响性能,最终,在创建足够的对象后,内存(大量虚拟内存充斥)资源耗尽。
这里就轮到垃圾回收器登场了,当垃圾回收器工作的时候,一边回收空间,一边使堆中的对象排列紧凑。这样“堆指针”就可以很容易移动到更靠近传送带的开始处(java堆分配空间是先进),也就尽量避免了页面错误。垃圾回收期会对对象重新排列,实现高速的、有无限空间(?)可以分配的堆模型。
下面是垃圾回收(不止java)常用的三种设计方式:
1、引用计数
每个对象含有一个应用计数。当有引用连接到对象的时候+1,引用离开作用域或者赋值null的时候-1。好了,那么当发现某个对象的引用是0的时候,就释放它占用的空间(这里会出现一变为0就释放空间)。这里就存在缺陷,如果对象循环引用,即A引用B,B引用A,就出现“对象可以被回收,但是引用计数不是0”的情况。对于垃圾回收器来说,定位这种互相引用的对象组开销极大。另外,管理引用计数的开销不大,但是这个会在整个程序生命周期内持续发生。引用计数的方式一般用来表述垃圾收集,但没有应用于任何一种JVM中。
2、stop-and-copy
这种方式是先暂停程序(不是后台运行,而是停止程序,执行垃圾回收),然后将所以存活的对象从当前的堆中复制到另外一个堆,剩下的都是垃圾。当对象被复制到新的家(堆)时,会把这些对象一个挨着一个,所以新堆保持紧凑排列。这个就是前面说的JVM虚拟机的垃圾回收期为什么能做到使对象紧凑排列了。复制过程会产生新的开销,以及所有指向就旧对象的引用都要指向新的地址。这里可能出现来自非堆的引用(不是new出来的对象),这些会在遍历旧堆的引用的时候被找出来,重新指向新堆。
这种回收方式,效率低。首先,是因为要有两个堆,然后对象要在两个堆中复制转移,所以实际上维护的空间比理论上大一倍。例如,某些JVM的做法是,在堆里面分配几个大的内存块,复制的操作在这里个内存块中进行。其次,当程序运行趋于稳定以后,产生的垃圾比较少,甚至可能没有垃圾。这个时候来回复制就很浪费了。为了避免浪费,JVM会进行检查,要是没有新垃圾产生,就自动转换成下一种模式。
3、mark-and-sweep
Sun公司早期版本的虚拟机使用的就是这个。这种方式的思路是从堆和静态存储区出发,遍历所有的引用,然后就能找到所有存活对象。每当找到一个存活对象,就给该对象一个标记,记上一笔。所有标记都做完以后,清理开始。在清理的时候,没有标记的对象将被释放,不会发生复制动作。这个时候堆中就有点像C的样子,所以如果要让剩下的对象内存连续,就需要重新整理剩下的对象。
小结:
Sun的文献把垃圾回收看做是低优先级的后台进程,指的是因为stop-and-copy:毕竟要暂停程序。但是在早期版本中,JVM使用的是mark-and-sweep。现在这两种回收方式通过JVM进行监视,如果有所对象都很稳定,垃圾回收器效率降低的话,就切换到mark-and-sweep。同样的,如果mark-and-sweep的效果不好,堆中出现了很多垃圾碎片(无引用对象),就会切换到stop-and-copy。在stop-and-copy使用的时候,因为内存分配以较大的“块”为单位,如果对象较大,它会占用整个块。在stop-and-copy运行的到停止程序运行的操作前,会把所有存活的对象复制到新的块(堆)中,这个时候旧的块就会被废弃,垃圾回收器就可以向废弃的块复制新对象进去,灵活利用资源。每个块都有相应的代数(count)来记录它是否还存活。如果块在某处被引用,count会增加。垃圾回收器将对上次回收动作之后新分配的块进行整理。这个対短命的对象很有帮助。垃圾回收期会定期进行完整的清理动作----大型对象仍然不会被复制,内含小型对象的那些块还是会被复制并且整理。
JVM有许多的附加技术用以提升速度。比如JIT(Just-In-Time)编译器的技术。这个会把程序全部或部分翻译成本地机器码,程序运行速度因此快上很多。当需要装载某个类的时候(创建该类的第一个对象,后续创建不会再次装载),编译器先找到对应的class文件,然后把字节码内容装入内存中。这个时候,有两种方式可以选。其一是让JIT编译所有代码转换成机器码。但是因为装载的发生不可控制,是零散在整个程序的生命周期内的,累加起来就需要花费很多时间,并且会增加可执行代码的长度(字节码要比JIT编译后展开的机器码小很多),这个可能导致内存页面调度,从而降低程序的速度。其二是惰性评估(lazy evaluatio),意思是JIT只有在必要的时候才编译代码,这样从不会被执行的代码(import 进来,但是没有使用)就压根不会被JIT编译。JDK中的Java HotSpot技术就是采用了类似方法,代码每次执行都会做一些优化,所以执行次数越多,它的速度就越快。
参考资料:
[1] java垃圾回收机制整理
[2] 浅谈Java垃圾回收
最后
以上就是忧郁香菇为你收集整理的【Java基础】浅谈垃圾回收的全部内容,希望文章能够帮你解决【Java基础】浅谈垃圾回收所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复