我是靠谱客的博主 端庄鸵鸟,最近开发中收集的这篇文章主要介绍相机校正和图像校正:图像去畸变日萌社5.1. 相机校正和图像校正1.相机标定,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

日萌社

人工智能AI:Keras PyTorch MXNet TensorFlow PaddlePaddle 深度学习实战(不定时更新)


CNN:RCNN、SPPNet、Fast RCNN、Faster RCNN、YOLO V1 V2 V3、SSD、FCN、SegNet、U-Net、DeepLab V1 V2 V3、Mask RCNN

车道线检测

相机校正、张氏标定法、极大似然估计/极大似然参数估计、牛顿法、高斯牛顿法、LM算法、sin/cos/tan/cot

相机校正和图像校正:图像去畸变

车道线提取:Sobel边缘提取算法

透视变换

车道线定位及拟合:直方图确定车道线位置

车道曲率和中心点偏离距离计算

在视频中检测车道线


5.1. 相机校正和图像校正

学习目标

  • 知道相机校正API及其使用方法
  • 了解图像去畸变的方法

1.相机标定

根据张正友校正算法,利用棋盘格数据校正对车载相机进行校正,计算其内参矩阵,外参矩阵和畸变系数。

标定的流程是:

  • 准备棋盘格数据,即用于标定的图片
  • 对每一张图片提取角点信息
  • 在棋盘上绘制提取到的角点(非必须,只是为了显示结果)
  • 利用提取的角点对相机进行标定
  • 获取相机的参数信息

1.1. 标定的图片

标定的图片需要使用棋盘格数据在不同位置、不同角度、不同姿态下拍摄的图片,最少需要3张,当然多多益善,通常是10-20张。该项目中我们使用了20张图片,如下图所示:

把这些图片存放在项目路径中的camera_cal文件夹中。

1.2. 相机校正

下面我们对相机进行校正,OPenCV中提供了对相机进行校正的代码,在本项目中直接使用opencv中的API进行相机的校正,如下所示:

# 1. 参数设定:定义棋盘横向和纵向的角点个数并指定校正图像的位置
nx = 9
ny = 6
file_paths = glob.glob("./camera_cal/calibration*.jpg")
# 2. 计算相机的内外参数及畸变系数
def cal_calibrate_params(file_paths):
    object_points = []  # 三维空间中的点:3D
    image_points = []   # 图像空间中的点:2d
    # 2.1 生成真实的交点坐标:类似(0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)的三维点
    objp = np.zeros((nx * ny, 3), np.float32)
    objp[:, :2] = np.mgrid[0:nx, 0:ny].T.reshape(-1, 2)  
    # 2.2 检测每幅图像角点坐标
    for file_path in file_paths:
        img = cv2.imread(file_path)
        # 将图像转换为灰度图
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        # 自动检测棋盘格内4个棋盘格的角点(2白2黑的交点)
        rect, corners = cv2.findChessboardCorners(gray, (nx, ny), None)
        # 若检测到角点,则将其存储到object_points和image_points
        if rect == True:
            object_points.append(objp)
            image_points.append(corners)
    # 2.3 获取相机参数
    ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(object_points, image_points, gray.shape[::-1], None, None)
    return ret, mtx, dist, rvecs, tvecs

在这里有几个API给大家介绍下:

  1. 寻找棋盘图中的棋盘角点
rect, corners = cv2.findChessboardCorners(image, pattern_size, flags)

参数:

  • Image: 输入的棋盘图,必须是8位的灰度或者彩色图像

  • Pattern_size:棋盘图中每行每列的角点个数(内角点)。

  • flags: 用来定义额外的滤波步骤以有助于寻找棋盘角点。所有的变量都可以单独或者以逻辑或的方式组合使用。取值主要有:

    CV_CALIB_CB_ADAPTIVE_THRESH :使用自适应阈值(通过平均图像亮度计算得到)将图像转换为黑白图,而不是一个固定的阈值。

    CV_CALIB_CB_NORMALIZE_IMAGE :在利用固定阈值或者自适应的阈值进行二值化之前,先使用cvNormalizeHist来均衡化图像亮度。

    CV_CALIB_CB_FILTER_QUADS :使用其他的准则(如轮廓面积,周长,方形形状)来去除在轮廓检测阶段检测到的错误方块。

返回:

  • Corners:检测到的角点
  • rect: 输出是否找到角点,找到角点返回1,否则返回0

  • 检测完角点之后我们可以将将测到的角点绘制在图像上,使用的API是:

    cv2.drawChessboardCorners(img, pattern_size, corners, rect)
    

    参数:

    • Img: 预绘制检测角点的图像
    • pattern_size : 预绘制的角点的形状
    • corners: 角点矩阵
    • rect: 表示是否所有的棋盘角点被找到,可以设置为findChessboardCorners的返回值

    注意:如果发现了所有的角点,那么角点将用不同颜色绘制(每行使用单独的颜色绘制),并且把角点以一定顺序用线连接起来,如下图所示:

  • 利用定标的结果计算内外参数

ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(object_points, image_points, image_size, None, None)

参数:

  • Object_points:世界坐标系中的点,在使用棋盘的场合,我们令z的坐标值为0,而x,y坐标用里面来度量,选用英寸单位,那么所有参数计算的结果也是用英寸表示。最简单的方式是我们定义棋盘的每一个方块为一个单位。
  • image_points:在图像中寻找到的角点的坐标,包含object_points所提供的所有点
  • image_size: 图像的大小,以像素为衡量单位

返回:

  • ret: 返回值

  • mtx: 相机的内参矩阵,大小为3*3的矩阵

  • dist: 畸变系数,为5*1大小的矢量

  • rvecs: 旋转变量

  • tvecs: 平移变量

1.3 图像去畸变

上一步中我们已经得到相机的内参及畸变系数,我们利用其进行图像的去畸变,最直接的方法就是调用opencv中的函数得到去畸变的图像:

def img_undistort(img, mtx, dist):
    dst = cv2.undistort(img, mtx, dist, None, mtx)
    return dst

我们看下求畸变的API:

dst = cv2.undistort(img, mtx, dist, None, mtx)

参数:

  • Img: 要进行校正的图像
  • mtx: 相机的内参
  • dist: 相机的畸变系数

返回:

  • dst: 图像校正后的结果

总结:

  1. 标定的图片

    不同角度和方向拍摄的棋盘格图片数据

  2. 相机校正

    检测棋盘格数据的角点:

    cv2.findChessboardCorners()

    计算相机的内参数和外参数:cv2.calibrateCamera()

  3. 图像去畸变

    cv2.undistort()

最后

以上就是端庄鸵鸟为你收集整理的相机校正和图像校正:图像去畸变日萌社5.1. 相机校正和图像校正1.相机标定的全部内容,希望文章能够帮你解决相机校正和图像校正:图像去畸变日萌社5.1. 相机校正和图像校正1.相机标定所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(46)

评论列表共有 0 条评论

立即
投稿
返回
顶部