概述
之前讲到了数据库层和缓存层的改造思路,而对于业务层的改造,采用了集中式服务转微服务的架构方案。既然是微服务,就意味着面临大量的服务间的内部调用及服务依赖,这就意味着,如果一次请求的调用涉及到两个或多个微服务之间的调用,恰好有下游的微服务调用失败,我们就必须要考虑到回滚及服务间保证数据一致性的问题。所以,今天我将列出可能出现的失败情况及对应的解决方案,希望对大家正在做微服务改造的团队有所帮助。
首先,我们对微服务间调用做一个分类:
服务间没有直接依赖,采用异步化调用,上游服务完成后,发一个消息异步通知下游服务,下游服务成功与否对上游服务没有影响。
上游服务弱依赖于某个下游服务的处理结果,可降级。降级时可以不返回这部分的数据。同步调用降级时转为异步。
上下游微服务强依赖,上游服务依赖于下游服务的返回或者回调,下游必须正常执行,如果下游服务失败了,本次请求判定为失败。
服务间纯异步调用,需保证幂等性和队列重试机制
对于Case1, 只需要考虑2点:幂等性和消息队列重试机制,幂等性意味着,重复消息不会对下游服务的结果产生任何影响;消息队列重试机制保证了,消息本身不会出现丢失,即便消息队列在发给下游队列前挂掉了,重启后,能继续发送对应的消息。
上下游同步执行失败,通过消息执行异步调用
对于Case2, 采用的方案如下图所示,主服务依赖于A,B,C 三个下游服务,同步调用过程中,服务C调用失败。由于服务C不是强依赖,我们便可以给消息队列发送一条消息,保证主服务可以正常返回,同时保证服务C能继续被执行,保证数据的一致性。
采用TCC进行提交与回滚,保证数据的一致性
Case3是服务间调用最严格的情况,意味着如果下游服务中有一个服务调用失败,上下游的所有服务必须回滚。意味着服务间必须保证同一个事务。业界公认的一个解决方案就是 TCC (Try-Confirm-Cancel) 模式:
主业务服务分别调用下游业务执行try操作,并在活动管理器中登记所有下游服务。当所有下游微服务的try操作都调用成功,或者某个下游微业务服务的try操作失败。
业务活动管理器根据第1步的执行结果来执行confirm或cancel操作。如果之前所有try操作都成功,则活动管理器调用所有下游微业务,执行confirm操作。否则调用所有下游微服务的cancel操作。
如果第2步,执行confirm或concel操作出现失败,活动管理器会启动重试机制,保证所有微服务最终提交或者回滚操作成功。
小结
上文对微服务间调用的3种情况的数据一致性方案做了说明:
1. 确保接口幂等性,消息队列具备重试机制,实际上几乎现在所有的MQ都支持重试。
2. 服务调用同步转异步,确保上游服务成功执行,并保证服务间的数据一致性。
3. 利用TCC方案解决服务间调用强依赖的数据一致性。
扫描二维码或手动搜索微信公众号: ForestNotes
欢迎转载,带上以下二维码即可
最后
以上就是纯情蓝天为你收集整理的微服务下的数据一致性思考的全部内容,希望文章能够帮你解决微服务下的数据一致性思考所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复