概述
package SparkStreamingKafKa.OffSetMysql import java.sql.{DriverManager, ResultSet} import com.typesafe.config.{Config, ConfigFactory} import org.apache.kafka.clients.consumer.ConsumerRecord import org.apache.kafka.common.TopicPartition import org.apache.kafka.common.serialization.StringDeserializer import org.apache.log4j.{Level, Logger} import org.apache.spark.SparkConf import org.apache.spark.rdd.RDD import org.apache.spark.streaming.dstream.InputDStream import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe import org.apache.spark.streaming.kafka010.{HasOffsetRanges, KafkaUtils, LocationStrategies, OffsetRange} import org.apache.spark.streaming.{Seconds, StreamingContext} import redis.clients.jedis.Jedis import scala.collection.mutable object StreamingKafkaWCMysqlOffset1 { //设置日志级别 Logger.getLogger("org").setLevel(Level.WARN) def main(args: Array[String]): Unit = { //conf 本地运行设置 val conf: SparkConf = new SparkConf() .setMaster("local[*]") .setAppName(this.getClass.getSimpleName) //SparkStreaming val ssc: StreamingContext = new StreamingContext(conf, Seconds(3)) val groupId = "hello_topic_group0" // kafka的参数配置 val kafkaParams = Map[String, Object]( "bootstrap.servers" -> "Linux00:9092,Linux01:9092,Linux04:9092", "key.deserializer" -> classOf[StringDeserializer], "value.deserializer" -> classOf[StringDeserializer], "group.id" -> groupId, "auto.offset.reset" -> "earliest", "enable.auto.commit" -> (false: java.lang.Boolean) ) val topic = "he8" val topics = Array(topic) val config: Config = ConfigFactory.load() // 需要设置偏移量的值 val offsets = mutable.HashMap[TopicPartition, Long]() val conn1 = DriverManager.getConnection(config.getString("db.url"), config.getString("db.user"), config.getString("db.password")) val pstm = conn1.prepareStatement("select * from mysqloffset_copy where groupId = ? and topic = ? ") pstm.setString(1, groupId) pstm.setString(2, topic) val result: ResultSet = pstm.executeQuery() while (result.next()) { // 把数据库中的偏移量数据加载了 val p = result.getInt("partition") val f = result.getInt("untilOffset") // offsets += (new TopicPartition(topic,p)-> f) val partition: TopicPartition = new TopicPartition(topic, p) offsets.put(partition, f) } val stream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String]( ssc, LocationStrategies.PreferConsistent, Subscribe[String, String](topics, kafkaParams,offsets) ) //转换成RDD stream.foreachRDD(rdd => { //手动指定分区的地方 val ranges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges println("长度=" + ranges.length) ranges.foreach(println) val result: RDD[(String, Int)] = rdd.map(_.value()).map((_, 1)).reduceByKey(_ + _) result.foreach(println) result.foreachPartition(p => { val jedis: Jedis = ToolsRedisMysql.getJedis() p.foreach(t => { jedis.hincrBy("wc1", t._1, t._2) }) jedis.close() }) val conn = DriverManager.getConnection(config.getString("db.url"), config.getString("db.user"), config.getString("db.password")) // 把偏移量的Array 写入到mysql中 ranges.foreach(t => { // 思考,需要保存哪些数据呢? 起始的offset不需要 还需要加上 groupid val pstm = conn.prepareStatement("replace into mysqloffset_copy values (?,?,?,?)") pstm.setString(1, t.topic) pstm.setInt(2, t.partition) pstm.setLong(3, t.untilOffset) pstm.setString(4, groupId) pstm.execute() pstm.close() }) }) ssc.start() ssc.awaitTermination() } }
最后
以上就是冷艳大侠为你收集整理的将KafKa的偏移量写入Mysql的全部内容,希望文章能够帮你解决将KafKa的偏移量写入Mysql所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复